K-theory of a Waldhausen category

Milind Gunjal

Department of Mathematics
Florida State University

November $7^{\text {th }}, 2023$

Introduction

Space with interesting homotopy groups

History

Low dimensional al- gebraic K-theory	Rings	$\mathrm{K}_{0}, K_{1}, K_{2}$	$1957-67$
Higher algebraic K- theory	Rings	Quillen's +- construction	1971
K-theory of Schemes	Small Exact Categories	Quillen's Q- construction	1972
K-theory of Spaces	Waldhausen Categories	Waldhausen's S•-construction	1978

Waldhausen categories

Definition 1

Let \mathcal{C} be a category equipped with a subcategory $c o=c o(\mathcal{C})$ of morphisms in the category \mathcal{C} called cofibrations (\longmapsto). The pair $(\mathcal{C}, c o)$ is called a category with cofibrations if the following axioms are satisfied:

Definition 1

Let \mathcal{C} be a category equipped with a subcategory $c o=c o(\mathcal{C})$ of morphisms in the category \mathcal{C} called cofibrations (\longmapsto). The pair $(\mathcal{C}, c o)$ is called a category with cofibrations if the following axioms are satisfied:
(1) Every isomorphism in \mathcal{C} is a cofibration.
(2) There is a zero object, 0 in \mathcal{C}, and the unique morphism $0 \hookrightarrow A$ in \mathcal{C} is a cofibration for every $A \in O b(\mathcal{C})$. (i.e., every object of \mathcal{C} is cofibrant).
(3) If $A \hookrightarrow B$ is a cofibration and $A \rightarrow C$ is any morphism in \mathcal{C}, then the pushout $B \bigcup_{A} C$ of these two maps exists in \mathcal{C} and $C \longmapsto B \bigcup_{A} C$ is a cofibration.

Remarks

(1) Coproduct $B \amalg C$ of any two objects $B, C \in O b(\mathcal{C})$ exists. Since, $B \amalg C=B \bigcup_{0} C$.
(2) Every cofibration $A \mapsto B$ in \mathcal{C} has a cokernel B / A. Since, $B / A=B \bigcup_{A} 0$.
(3) We refer to $A \mapsto B \rightarrow B / A$ as a cofibration sequence in \mathcal{C}.

Remarks

(1) Coproduct $B \amalg C$ of any two objects $B, C \in O b(\mathcal{C})$ exists. Since, $B \amalg C=B \bigcup_{0} C$.
(2) Every cofibration $A \mapsto B$ in \mathcal{C} has a cokernel B / A.

Since, $B / A=B \bigcup_{A} 0$.
(3) We refer to $A \hookrightarrow B \rightarrow B / A$ as a cofibration sequence in \mathcal{C}.

Example 2

(1) The category \mathbf{R}-Mod, for any ring R is a category with cofibrations:
The cofibrations are the injective maps.
(2) In fact, any exact category, hence any abelian category is naturally a category with cofibrations:
The cofibrations are the monomorphisms.

Definition 3

A Waldhausen category \mathcal{C} is a category with cofibrations, together with a family $w(\mathcal{C})$ of morphisms in \mathcal{C} called weak equivalences (abbreviated w.e. and indicated with $\xrightarrow{\sim}$) satisfying the following axioms:

Definition 3

A Waldhausen category \mathcal{C} is a category with cofibrations, together with a family $w(\mathcal{C})$ of morphisms in \mathcal{C} called weak equivalences (abbreviated w.e. and indicated with $\xrightarrow{\sim}$) satisfying the following axioms:
(1) Every isomorphism in \mathcal{C} is a w.e.
(2) Weak equivalences are closed under composition. (So we may regard $w(\mathcal{C})$ as a subcategory of \mathcal{C}.)
(3) Gluing axiom:

The induced map $B \bigcup_{A} C \rightarrow B^{\prime} \bigcup_{A^{\prime}} C^{\prime}$ is also a weak equivalence.

Definition 3

- Extension axiom:

If $A \rightarrow A^{\prime}$ and $B / A \rightarrow B^{\prime} / A^{\prime}$ are w.e. then so is $B \rightarrow B^{\prime}$.

Definition 4

A Waldhausen category \mathcal{C} is called saturated if $A \xrightarrow{f} B \xrightarrow{g} C, g \circ f$ is a w.e., then f is a w.e. if and only if g is.

Remark

We will consider only saturated Waldhausen categories, and hence we will just call them Waldhausen categories by abuse of language.

Definition 4

A Waldhausen category \mathcal{C} is called saturated if $A \xrightarrow{f} B \xrightarrow{g} C, g \circ f$ is a w.e., then f is a w.e. if and only if g is.

Remark

We will consider only saturated Waldhausen categories, and hence we will just call them Waldhausen categories by abuse of language.

Example 5

The category of bounded above ($k \geq 0$) chain complexes over a ring R, $\mathbf{C h}_{R}$ is a Waldhausen category by defining a map $f: M \rightarrow N \in \operatorname{Hom}_{C h_{R}}(M, N)$ is

- a w.e. if f induces isomorphism on homology groups.
- a cofibration if for each $k \geq 0$ the map $f_{k}: M_{k} \rightarrow N_{k}$ is a monomorphism with a projective module as its cokernel.

Example 6

Given a space X, consider the category $\mathcal{R}(X)$ of spaces that retract to X.

- Cofibrations are Serre cofibrations, as in the model structure.
- W.E. are maps that induce isomorphisms for some chosen homology theory.

Example 7

Any category with cofibrations ($\mathrm{C}, c o$) may be considered as a Waldhausen category in which the category of weak equivalences is the category iso((\mathcal{C}) of all isomorphisms.

S_{\bullet}-construction

- We will now see S_{\bullet}-construction. S stands for Segal as in Graeme B. Segal. Segal gave a similar construction for additive categories but it was reinvented by Waldhausen for Waldhausen categories.
- We will now see S_{\bullet}-construction. S stands for Segal as in Graeme B. Segal. Segal gave a similar construction for additive categories but it was reinvented by Waldhausen for Waldhausen categories.
- For any category \mathcal{C}, the arrow category ArC is the category with
 $g: c \rightarrow d$ is a commutative diagram in \mathcal{C}

- Consider $[n]=\{0 \leftarrow 1 \leftarrow \cdots \leftarrow n\}$ as a category, and the arrow category $\operatorname{Ar}\left([n]^{o p}\right)$.
- We will now see S_{\bullet}-construction. S stands for Segal as in Graeme B. Segal. Segal gave a similar construction for additive categories but it was reinvented by Waldhausen for Waldhausen categories.
- For any category \mathcal{C}, the arrow category ArC is the category with
 $g: c \rightarrow d$ is a commutative diagram in \mathcal{C}

- Consider $[n]=\{0 \leftarrow 1 \leftarrow \cdots \leftarrow n\}$ as a category, and the arrow category $\operatorname{Ar}\left([n]^{o p}\right)$.
- For e.g. in $\operatorname{Ar}\left([11]^{o p}\right)$ there is a unique morphism from the object $(2 \rightarrow 4)$ to $(3 \rightarrow 7)$ and no morphism in the other way.

Definition 8

Let \mathcal{C} be a category with cofibrations. Then $S \mathcal{C}=\left\{[n] \mapsto S_{n} \mathcal{C}\right\}$ is the simplicial category which in degree n is the category $S_{n} \mathrm{C}$ of functors $C: \operatorname{Ar}\left([n]^{o p}\right) \rightarrow \mathcal{C}$ satisfying the following properties:
(1) For all $j \geq 0, C(j=j)=0$.
(2) If $i \leq j \leq k$, then $C(i \leq j) \mapsto C(i \leq k)$ is a cofibration, and

$$
\begin{gathered}
C(j=j) \\
\uparrow \\
\uparrow \\
C(i \leq j) \\
\text { 个 } \\
\\
\hline
\end{gathered}
$$

is a pushout.

Example 9

- $S_{0} \mathrm{C}:$ Trivial category (One object, its identity morphism).

Example 9

- $S_{0} \mathrm{C}:$ Trivial category (One object, its identity morphism).
- $S_{1} \mathrm{C}: \mathcal{C}$

Example 9

- $S_{0} \mathrm{C}$: Trivial category (One object, its identity morphism).
- S_{1} C: \mathcal{C}

- $S_{2} \mathrm{C}$:

Example 9

- $S_{3} \mathrm{C}$:

$S_{2} \mathrm{C}$ as a category with cofibrations

- Given a category with cofibrations \mathcal{C}, we can define a category called $S_{2} \mathrm{C}$ which has $\left(\mathrm{Ob}\left(S_{2} \mathrm{C}\right)\right)=$ collection of cofibration sequences, morphisms between two objects as follows:

$S_{2} \mathrm{C}$ as a category with cofibrations

- Given a category with cofibrations \mathcal{C}, we can define a category called $S_{2} \mathrm{C}$ which has $\left(\mathrm{Ob}\left(S_{2} \mathrm{C}\right)\right)=$ collection of cofibration sequences, morphisms between two objects as follows:

- We can define cofibrations in the category $S_{2} \mathrm{C}$. A map like the one above is a cofibration if the vertical maps are cofibrations and the map from $A_{1} \coprod_{A_{0}} B_{0} \rightarrow B_{1}$ is a cofibration.

Remark

It can be seen that, with a similar pattern $S_{n} \mathrm{C}$ is a category with cofibrations for every $n \in \mathbb{N}$. Hence, one can consider $S_{\bullet}\left(S_{\bullet} \mathrm{C}\right)$ and keep on doing this. This will give us a spectrum.

Remark

It can be seen that, with a similar pattern $S_{n} \mathcal{C}$ is a category with cofibrations for every $n \in \mathbb{N}$.
Hence, one can consider $S_{\bullet}\left(S_{\bullet} \mathrm{C}\right)$ and keep on doing this. This will give us a spectrum.
However, we are not working with this spectrum in this talk. We are just considering the first level of this spectrum, i.e., we are not considering the cofibration structure over $S_{n} \mathcal{C}$ for $n \geq 2$.

K-theory of Waldhausen categories

Definition 10

Let \mathcal{C} be a Waldhausen category. $K_{0}(\mathcal{C})$ is the abelian group presented as having one generator [C] for each $C \in O b(\mathcal{C})$, subject to following relations:
(1) $[C]=\left[C^{\prime}\right]$ if there exists a w.e. $C \xrightarrow{\sim} C^{\prime}$.
(2) $[C]=[B]+[C / B]$ for every cofibration sequence $B \mapsto C \rightarrow C / B$.

Definition 10

Let \mathcal{C} be a Waldhausen category. $K_{0}(\mathcal{C})$ is the abelian group presented as having one generator $[C]$ for each $C \in \operatorname{Ob}(\mathcal{C})$, subject to following relations:
(1) $[C]=\left[C^{\prime}\right]$ if there exists a w.e. $C \xrightarrow{\sim} C^{\prime}$.
(2) $[C]=[B]+[C / B]$ for every cofibration sequence $B \mapsto C \rightarrow C / B$.

Remarks

These relations imply:
(1) $[0]=0$.
(2) $[B \amalg C]=[B]+[C]$.
(3) $\left[B \bigcup_{A} C\right]=[B]+[C]-[A]$.
(1) $[B / A]=[B]-[A]$ since, $B / A=B \bigcup_{A} 0$.

- From the S_{\bullet}-construction, we can have for following:

$$
S_{\bullet} w \mathbb{C}=\left\{[n] \mapsto O b\left(S_{n} w \mathbb{C}\right)\right\} \in \text { sSet. }
$$

So, we can have the loop space of the geometric realization:

$$
K(\mathcal{C}):=\Omega\left|S_{\bullet} w \mathbb{C}\right| .
$$

- Hence, we have:

$$
\pi_{i}(K(\mathcal{C}))=\pi_{i}\left(\Omega\left|S_{\bullet} w \mathcal{C}\right|\right) \cong \pi_{i+1}\left(\left|S_{\bullet} w \mathcal{C}\right|\right) \stackrel{\text { def }}{=} \pi_{i+1}\left(S_{\bullet} w \mathcal{C}\right)
$$

Nerve of a category

Nerve of a small category \mathcal{C} is a simplicial set $N(\mathcal{C})$.

- $N_{0}(\mathrm{C})=0$-cells $=O b(\mathcal{C})$:
- A
- $N_{1}(\mathrm{C})=1$-cells $=$ Morphisms of $\mathcal{C}:$

$$
A_{1} \xrightarrow{f} A_{2}
$$

Nerve of a category

Nerve of a small category \mathcal{C} is a simplicial set $N(\mathcal{C})$.

- $N_{0}(\mathcal{C})=0$-cells $=O b(\mathcal{C})$:

- A

- $N_{1}(\mathcal{C})=1$-cells $=$ Morphisms of $\mathrm{C}:$

$$
A_{1} \xrightarrow{f} A_{2}
$$

- $N_{2}(\mathrm{C})=2$-cells $=$ A pair of composable morphisms in $\mathrm{C}:$

i.e., generated from $A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3}$.
- $N_{3}(\mathrm{C})=3$-cells $=$ A triplet of composable morphisms in C :

i.e., generated from $A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3} \xrightarrow{f_{3}} A_{4}$.
- and so on.
- $N_{3}(\mathrm{C})=3$-cells $=$ A triplet of composable morphisms in C :

i.e., generated from $A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3} \xrightarrow{f_{3}} A_{4}$.
- and so on.
- $d_{i}: N_{k}(\mathcal{C}) \rightarrow N_{k-1}(\mathcal{C}):$

$$
\begin{gathered}
\left(A_{1} \rightarrow \cdots \rightarrow A_{i-1} \xrightarrow{f_{i-1}} A_{i} \xrightarrow{f_{i}} A_{i+1} \rightarrow \cdots \rightarrow A_{k}\right) \\
\downarrow \\
\left(A_{1} \rightarrow \cdots A_{i-1} \xrightarrow{f_{i} \circ f_{i-1}} A_{i+1} \rightarrow \cdots A_{k}\right)
\end{gathered}
$$

- $s_{i}: N_{k}(\mathcal{C}) \rightarrow N_{k+1}(\mathcal{C}):$

$$
\left(A_{1} \rightarrow \cdots \rightarrow A_{i} \rightarrow \cdots \rightarrow A_{k}\right) \mapsto\left(A_{1} \rightarrow \cdots A_{i} \xrightarrow{\text { id }} A_{i} \rightarrow \cdots A_{k}\right) .
$$

- We define a construction for a Waldhausen category \mathcal{C}, denoted by T. C .

Where, $T_{n} \mathcal{C}$ is generated by $N_{p}\left(S_{q} w \mathcal{C}\right), p+q=n+1$. Here, w stands for considering weak equivalences.

- We define a construction for a Waldhausen category \mathcal{C}, denoted by T•C.
Where, $T_{n} \mathcal{C}$ is generated by $N_{p}\left(S_{q} w \mathcal{C}\right), p+q=n+1$. Here, w stands for considering weak equivalences.
- So, $N_{p}\left(S_{q} w \mathcal{C}\right) \in \mathbf{s}^{\mathbf{2}}$ Set. Up on taking its anti-diagonal (via a w.e. called Artin-Mazur map) becomes a sSet.

$$
N_{p} S_{q} w \mathcal{C} \longmapsto d\left(N_{p} S_{q} w \mathcal{C}\right) \stackrel{\text { Artin-Mazur }}{\longrightarrow} T\left(N_{p} S_{q} w \mathcal{C}\right)
$$

- Since it is known that $O b\left(S_{\bullet} w \mathbb{C}\right) \xrightarrow{\sim} d\left(N_{p}\left(S_{q} w \mathbb{C}\right)\right)$, the two simplicial sets $O b\left(S_{\bullet} w \mathcal{C}\right)$ and T_{\bullet} © are weakly equivalent, so they have same homotopy groups.

Examples of cells

Example 11

Given a Waldhausen category \mathcal{C}, :
$T_{0}(\mathrm{C})^{a}$ consists of:
A
Figure 1: $N_{0}\left(S_{1} w \mathrm{C}\right)$

Example 11

Given a Waldhausen category \mathcal{C}, :
$T_{0}(\mathcal{C})^{a}$ consists of:

A

Figure 1: $N_{0}\left(S_{1} w \mathrm{C}\right)$
Similarly, for the 1-type:
$T_{1}(\mathrm{C})$ consists of:

$$
A_{0} \xrightarrow{\sim} A_{1}
$$

Figure 2: $N_{1}\left(S_{1} w \mathrm{C}\right)$

Figure 3: $N_{0}\left(S_{2} w \mathrm{C}\right)$

[^0]
Example 12

Again, similarly, for the 2-type:
$T_{2}(\mathrm{C})$ consists of:

Figure 4: $N_{2}\left(S_{1} w \mathrm{C}\right)$

Figure 5: $N_{1}\left(S_{2} w \mathrm{C}\right)$

Example 12

Approximation of a sSet by n-types

Definition 13

n-type is the full subcategory of Top* / \cong (i.e., pointed topological spaces up to homotopy equivalence) consisting of connected CW-spaces Y with $\pi_{i}(Y)=0$ for $i>n$.

Fact 14

For a connected $C W$-complex X, one can construct a sequence of spaces $P_{n} X$ such that $\pi_{i}\left(P_{n} X\right) \cong \pi_{i}(X)$ for $i \leq n$, and $\pi_{i}\left(P_{n} X\right)=0$ for $i>n$, and for $i_{n}: X \rightarrow P_{n} X$, and $j_{n}: P_{n} X \rightarrow P_{n-1} X$ we have $j_{n} \circ i_{n}=i_{n-1}$ for all $n \geq 1$.

Figure 7: Postnikov tower
This commutative diagram is called a Postnikov tower of X, the n-type spaces $P_{n} X$ are called truncations of X.

Postnikov tower of a sSet

- If $X \in \operatorname{sSet}, X$ is fibrant, then $P_{n} X=\operatorname{Cosk}_{n}(X)$, the tower of Coskeletons via Kan extensions.

Figure 8: Fibrant object X in sSet

- Λ_{k}^{m} is a horn.
- The lift exists for each $m, k \in \mathbb{N}, k<m$.

Postnikov tower of a sSet

- If $X \in \operatorname{sSet}, X$ is fibrant, then $P_{n} X=\operatorname{Cosk}_{n}(X)$, the tower of Coskeletons via Kan extensions.

Figure 8: Fibrant object X in sSet

- Λ_{k}^{m} is a horn.
- The lift exists for each $m, k \in \mathbb{N}, k<m$.
- In general, if X is not fibrant, we can use a fibrant replacement $X \rightarrow R X$ where $P_{n}(X)=\operatorname{Cosk}_{n}(R X)$.
- In general, the S_{\bullet}-construction is not fibrant, so we work with a different (algebraic) model.

Models for n-types: $n=0,1$

We want an algebraic model for the types in the Postnikov tower:

- $n=0$: Group, a fundamental group.
- $n=1: D_{*}^{(1)}(\mathcal{C}): D_{1}^{(1)}(\mathcal{C}) \xrightarrow{\partial} D_{0}^{(1)}(\mathcal{C})$, a SQuad.

Models for 1-type

- It is known that a stable quadratic module (SQuad) ${ }^{1}$ is 1-type, so we construct a SQuad for a given Waldhausen category \mathcal{C}.

[^1]
Definition 15

A stable quadratic module C_{*} is a commutative diagram of group homomorphisms

such that given $c_{i}, d_{i} \in C_{i}, i=0,1$,
(1) $w\left(\left\{\partial\left(c_{1}\right)\right\} \otimes\left\{\partial\left(d_{1}\right)\right\}\right)=\left[d_{1}, c_{1}\right]=d_{1}^{-1} c_{1}^{-1} d_{1} c_{1}$,
(2) $w\left(\left\{c_{0}\right\} \otimes\left\{d_{0}\right\}+\left\{d_{0}\right\} \otimes\left\{c_{0}\right\}\right)=0$. (The stability condition).

$$
\begin{aligned}
C_{0} & \rightarrow C_{0}^{a b} \\
x & \mapsto\{x\}
\end{aligned}
$$

A stable quadratic module C_{*} is a commutative diagram of group homomorphisms

such that given $c_{i}, d_{i} \in C_{i}, i=0,1$,
(1) $w\left(\left\{\partial\left(c_{1}\right)\right\} \otimes\left\{\partial\left(d_{1}\right)\right\}\right)=\left[d_{1}, c_{1}\right]=d_{1}^{-1} c_{1}^{-1} d_{1} c_{1}$,
(2) $w\left(\left\{c_{0}\right\} \otimes\left\{d_{0}\right\}+\left\{d_{0}\right\} \otimes\left\{c_{0}\right\}\right)=0$. (The stability condition).

$$
\begin{aligned}
C_{0} & \rightarrow C_{0}^{a b} \\
x & \mapsto\{x\}
\end{aligned}
$$

Remark

The homotopy groups of C_{*} are:

- $\pi_{0}\left(C_{*}\right)=$ Coker ∂,
- $\pi_{1}\left(C_{*}\right)=$ Kerə.

1-type of a Waldhausen category

$U:$ SQuad $\xrightarrow{\text { Forget }}$ Set \times Set

$$
C_{*} \mapsto\left(C_{0}, C_{1}\right)
$$

The functor U has a left adjoint F, and a SQuad $F\left(E_{0}, E_{1}\right)$ is called free stable quadratic module on the sets E_{0} and E_{1}.

Fact 16

Given a Waldhausen category \mathcal{C}, we can define a corresponding SQuad $F\left(T_{0}(\mathrm{C}), T_{1}(\mathrm{C})\right)^{a}$, where $T_{0}(\mathrm{C}), T_{1}(\mathrm{C})$ come from example 11, 12.

[^2]
Detailed SQuad structure for Fact 16

- The generators for dimension 0 are:
- $[A]$ for any $A \in O b(\mathcal{C})$.
- The generators for dimension 1 are:
- $\left[A_{0} \xrightarrow{\sim} A_{1}\right]$ for any w.e.
- $[A \multimap B \rightarrow B / A]$ for any cofiber sequence.

Detailed SQuad structure for Fact 16

- The generators for dimension 0 are:
- $[A]$ for any $A \in O b(\mathcal{C})$.
- The generators for dimension 1 are:
- $\left[A_{0} \xrightarrow{\sim} A_{1}\right]$ for any w.e.
- $[A \mapsto B \rightarrow B / A]$ for any cofiber sequence.
- such that the following relations hold (i.e., we define $\partial, w)$:
- $\partial\left(\left[A_{0} \xrightarrow{\sim} A_{1}\right]\right)=-\left[A_{1}\right]+\left[A_{0}\right]$.
- $\partial([A \hookrightarrow B \rightarrow B / A])=-[B]+[B / A]+[A]$.
- $[0]=0$.
- $[A \xrightarrow{i d} A]=0$.
- $[A \xrightarrow{i d} A \rightarrow 0]=0,[0 \hookrightarrow A \xrightarrow{i d} A]=0$.
- For any composable weak equivalences $A \xrightarrow{\sim} B \xrightarrow{\sim} C$,

$$
[A \xrightarrow{\sim} C]=[B \xrightarrow{\sim} C]+[A \xrightarrow{\sim} B] .
$$

- For any $A, B \in O b(\mathrm{C})$, define the w as follows:

$$
\begin{gathered}
w([A] \otimes[B]):=\langle[A],[B]\rangle \\
= \\
-\left[B \xrightarrow{i_{2}} A \amalg B \xrightarrow{p_{2}} A\right]+\left[A \xrightarrow{i_{1}} A \amalg B \xrightarrow{p_{1}} B\right] .
\end{gathered}
$$

Here,

$$
A \underset{p_{2}}{\stackrel{i_{1}}{\leftrightarrows}} A \amalg B \underset{i_{2}}{\stackrel{p_{1}}{\rightleftarrows}} B
$$

are natural inclusions and projections of a coproduct in \mathcal{C}.

- For any $A, B \in O b(\mathrm{C})$, define the w as follows:

$$
\begin{gathered}
w([A] \otimes[B]):=\langle[A],[B]\rangle \\
= \\
-\left[B \xrightarrow{i_{2}} A \amalg B \xrightarrow{p_{2}} A\right]+\left[A \xrightarrow{i_{1}} A \amalg B \xrightarrow{p_{1}} B\right] .
\end{gathered}
$$

Here,

$$
A \underset{p_{2}}{\stackrel{i_{1}}{\leftrightarrows}} A \amalg B \underset{i_{2}}{\stackrel{p_{1}}{\rightleftarrows}} B
$$

are natural inclusions and projections of a coproduct in \mathcal{C}.

- For any commutative diagram in \mathcal{C} as follows:

we have

$$
\begin{gathered}
{\left[A_{0} \xrightarrow{\sim} A_{1}\right]+\left[B_{0} / A_{0} \xrightarrow{\sim} B_{1} / A_{1}\right]+\left\langle[A],-\left[B_{1} / A_{1}\right]+\left[B_{0} / A_{0}\right]\right\rangle} \\
= \\
-\left[A_{1} \mapsto B_{1} \rightarrow B_{1} / A_{1}\right]+\left[B_{0} \xrightarrow{\sim} B_{1}\right]+\left[A_{0} \mapsto B_{0} \rightarrow B_{0} / A_{0}\right] .
\end{gathered}
$$

- For any commutative diagram consisting of cofiber sequences in \mathcal{C} as follows:

we have,

$$
\begin{gathered}
{[B \mapsto C \rightarrow C / B]+[A \mapsto B \rightarrow B / A]} \\
=
\end{gathered}
$$

$$
[\mathrm{A} \rightarrow C \rightarrow C / A]+[B / A \mapsto C / A \rightarrow C / B]+\langle[A],-[C / A]+[C / B]+[B / A]\rangle .
$$

References I

[1] Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.
[2] W. G. Dwyer and J. Spaliński. "Homotopy theories and model categories". In: Handbook of algebraic topology. North-Holland, Amsterdam, 1995, pp. 73-126. DOI: 10.1016/B978-044481779-2/50003-1. URL: https://doi.org/10.1016/B978-044481779-2/50003-1.
[3] Hans-Joachim Baues. "Combinatorial Homotopy and 4-Dimensional Complexes". In: Walter de Gruyter (1991), pp. 171-177.

References II

[4] Friedhelm Waldhausen. "Algebraic K-theory of spaces". In: Algebraic and geometric topology (New Brunswick, N.J., 1983). Vol. 1126. Lecture Notes in Math. Springer, Berlin, 1985, pp. 318-419. DOI: 10.1007/BFb0074449. URL: https://doi.org/10.1007/BFb0074449.
[5] W. G. Dwyer, D. M. Kan, and J. H. Smith. "An obstruction theory for simplicial categories". In: Nederl. Akad. Wetensch. Indag. Math. 48.2 (1986), pp. 153-161. ISSN: 0019-3577.

Coskeletons as a Postnikov decomposition ${ }^{2}$

- Given any $X \in$ sSet, we can have a truncation functor for each $n \in \mathbb{N}$

$$
t r_{n}: \text { sSet } \rightarrow \text { sSet }_{\leq n}
$$

- Then by Kan extension we have the following functors:

$$
\text { sSet } \underset{\underset{\cos k_{n}}{\stackrel{s k_{n}}{\leftrightarrows}}}{\stackrel{t_{n}}{\longleftrightarrow}} \text { sSet }_{\leq n}
$$

such that $s k_{n} \dashv t r_{n} \dashv \cos k_{n}$.

- Now consider,

$$
\begin{aligned}
S k_{n} & :=s k_{n} \circ t r_{n}: \mathbf{s S e t} \rightarrow \mathbf{s S e t} \\
\operatorname{Cos} k_{n} & :=\cos k_{n} \circ t r_{n}: \mathbf{s S e t} \rightarrow \mathbf{s S e t} .
\end{aligned}
$$

Then $S k_{n} \dashv \operatorname{Cosk}_{n}$.
${ }^{2}$ W. G. Dwyer, D. M. Kan, and J. H. Smith. "An obstruction theory for
simplicial categories". In: Nederl. Akad. Wetensch. Indag. Math. 48.2 (1986), pp. 153-161. ISSN: 0019-3577.

- They also satisfy the following properties:
- $\left(\operatorname{Cosk}_{n} X\right)_{k} \cong \operatorname{set}\left(\Delta^{k}, \operatorname{Cosk}_{n} X\right) \cong \operatorname{set}\left(\operatorname{Sk}_{n} \Delta^{k}, X\right)$.
- If $k \leq n: S k_{n} \Delta^{k}=\Delta^{k},\left(\operatorname{Cosk}_{n} X\right)_{k}=X_{k}$.
- If $k=n+1$:

$$
\left(\operatorname{Cosk}_{n} X\right)_{n+1} \cong \operatorname{sSet}\left(S k_{n} \Delta^{n+1}, X\right) \cong \operatorname{set}\left(\partial \Delta^{n+1}, X\right)=0 .
$$

- Cosk_{n} is a right adjoint, so it preserves fibrant object. So, when X is fibrant, then so is $\operatorname{Cos}_{n} X$ and its homotopy groups are trivial in dimension $\geq n$.
- Hence, the sequence: $\mathrm{X}=\lim _{\leftarrow}\left(\cdots \rightarrow \operatorname{Cosk}_{n+1}(X) \rightarrow \operatorname{Cosk}_{n}(X) \rightarrow \operatorname{Cosk}_{n-1}(X) \rightarrow \cdots \rightarrow *\right)$ is up to homotopy, a Postnikov decomposition of X.

Serre cofibrations

- In the category of topological spaces, a map $f: X \rightarrow Y$ is called a Serre fibration, if for each CW-complex A, the map f has the RLP w.r.t. the inclusion $A \times\{0\} \rightarrow A \times[0,1]$:

- A map f is called a Serre cofibration if it has the LLP w.r.t. acyclic fibrations.

Definition 17

A map $i: A \rightarrow B$ is said to have the left lifting property (LLP) ${ }^{a}$ with respect to another map $p: X \rightarrow Y$ and p is said to have the right lifting property (RLP) with respect to i if a lift $h: B \rightarrow X$ exists for any of the commutative diagram of the following form:

[^3]Fact 18
The fibrations (in the sense of Model category) are the maps that have the RLP with respect to acyclic cofibrations (i.e., cofibrations that are also w.e.).

Definition 19

An object A is called fibrant if $A \rightarrow 0$ is a fibration.

- Consider

$$
U: \text { SQuad } \xrightarrow{\text { Forget }} \text { Set } \times \text { Set }
$$

$$
C_{*} \mapsto\left(C_{0}, C_{1}\right) .
$$

The functor U has a left adjoint F, and a SQuad $F\left(E_{0}, E_{1}\right)$ is called free stable quadratic module ${ }^{[1]}$ on the sets E_{0} and E_{1}.

- Given a set E,
- denote the free generated with basis E by $\langle E\rangle$,
- free abelian group with basis E by $\langle E\rangle^{a b}$,
- free group of nilpotency class 2 with basis E by $\langle E\rangle^{\text {nil }}$ (i.e., the quotient of $\langle E\rangle$ by triple commutators),
- Given an abelian group A,
- denote the quotient of $A \otimes A$ by $a \otimes b+b \otimes a, a, b \in A$ by $\hat{\otimes}^{2} A$.
- Given a pair of sets E_{0} and E_{1},
- write $E_{0} \cup \partial E_{1}$ for the set whose elements are the symbols e_{0} and ∂e_{1} for each $e_{0} \in E_{0}, e_{1} \in E_{1}$.
Then we can define the free SQuad by considering:
- $F\left(E_{0}, E_{1}\right)_{0}=\left\langle E_{0} \cup \partial E_{1}\right\rangle^{\text {nil }}$,
- $F\left(E_{0}, E_{1}\right)_{1}=\hat{\otimes}^{2}\langle E\rangle^{a b} \times\left\langle E_{0} \times E_{1}\right\rangle^{a b} \times\left\langle E_{1}\right\rangle^{n i l}$.

Simplicial Set

A simplicial set $X \in \mathbf{s S e t}$ is

- for each $n \in \mathbb{N}$ a set $X_{n} \in \operatorname{Set}$ (the set of n-simplices),
- for each injective map $\partial_{i}:[n 1] \mathrm{B}[n]$ of totally ordered sets $([n]:=(0<1<\cdots<n)$,
- a function $d_{i}: X_{n} \rightarrow X_{n 1}$ (the $i^{\text {th }}$ face map on n-simplices) ($n>0$ and 0in),
- for each surjective map $\sigma_{i}:[n+1] \rightarrow[n]$ of totally ordered sets,
- a function $s_{i}: X_{n} \rightarrow X_{n+1}$ (the $i^{\text {th }}$ degeneracy map on n-simplices) ($n \geq 0$ and $0 \leq i \leq n$),
- such that these functions satisfy the simplicial identities:

$$
\begin{gathered}
d_{i} d_{j}=d_{j-1} d_{i} \text { for } i<j \\
d_{i} s_{j}= \begin{cases}s_{j-1} d_{i}, & \text { when } i<j, \\
1, & \text { when } i=j, j+1, \\
s_{j} d_{i-1}, & \text { when } i>j+1\end{cases} \\
s_{i} s_{j}=s_{j+1} s_{i} \text { when } i \leq j
\end{gathered}
$$

Definition of a Quad ${ }^{3}$

Definition 20

A pre-crossed module G_{*} is a equivariant G_{0}-group homomorphism $\partial: G_{1} \rightarrow G_{0}$, where G_{0} acts on itself by conjugation.

[^4]
Definition 21

A quadratic module (w, δ, ∂) is a complex of $G_{0 \text {-groups }}$

$$
\left(G_{1}^{\mathrm{cr}}\right)^{\mathrm{ab}} \times\left(G_{1}^{\mathrm{cr}}\right)^{\mathrm{ab}}
$$

where, G_{1}^{cr} is a group such that the pre-cross module $\partial: G_{1} \rightarrow G_{0}$ becomes a crossed module $\partial: G_{1}^{\mathrm{cr}} \rightarrow G_{0}$. such that

- $\partial: G_{1} \rightarrow G_{0}$ is a $\operatorname{nil}(2)$-module.
- $\partial \delta=0, \delta w=\mathrm{w}=$ Peiffer commutator map:

$$
\mathrm{w}(x \otimes y)=-x-y+x+y^{\partial x}
$$

- All homomorphisms are equivariant with respect to the action of G_{0}
- $f^{\partial x}=f+w(\{\partial f\} \otimes\{x\}+\{x\}+\{\partial f\})$ for all $f \in G_{2}, x \in G_{1}$.
- $w(\{\partial a\} \otimes\{\partial b\})=[a, b]=-a-b+a+b$.

Remark

- Putting $G_{0}=0$ in the definition above gives us the Definition 15 .
- Homotopy groups of the quadratic module $\sigma=(w, \delta, \partial)$ can be defined as:

$$
\begin{aligned}
& \pi_{1}(\sigma)=\operatorname{Coker}(\partial) \\
& \pi_{2}(\sigma)=\operatorname{Ker}(\partial) / \operatorname{Im}(\delta) \\
& \pi_{3}(\sigma)=\operatorname{Ker}(\delta)
\end{aligned}
$$

- From Definition 15, we can conclude that C_{0} and C_{1} are groups of nilpotency class 2.

Given $x, y, z \in C_{0}$, we have:

$$
[x,[y, z]]=\partial w(\{[y, z]\} \otimes\{x\})=\partial w(0 \otimes\{x\})=0
$$

Similarly, given $f, g, h \in C_{1}$ we have:

$$
[f,[g, h]]=w(\{\partial([g, h])\} \otimes\{\partial(f)\})=w(\{[\partial(g), \partial(h)]\} \otimes\{\partial(f)\})=w(0 \otimes\{\partial(f)\})=0 .
$$

[^0]: ${ }^{a}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^1]: ${ }^{1}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^2]: ${ }^{a}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^3]: ${ }^{a}$ W. G. Dwyer and J. Spaliński. "Homotopy theories and model categories". In: Handbook of algebraic topology. North-Holland, Amsterdam, 1995, pp. 73-126. DOI: 10.1016/B978-044481779-2/50003-1. URL:
 https://doi.org/10.1016/B978-044481779-2/50003-1.

[^4]: ${ }^{3}$ Hans-Joachim Baues. "Combinatorial Homotopy and 4-Dimensional Complexes". In: Walter de Gruyter (1991), pp. 171-177.

