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This thesis consists of two parts:
@ Connected 3-type of K-theory of Waldhausen Categories.

© Symmetric Monoidal Bicategories and Biextensions.[!]

!Ettore Aldrovandi and Milind Gunjal. “Symmetric Monoidal Bicategories and
Biextensions”. In: hittps://arviv.org/abs/2411.10550 (2024).
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Definition of Waldhausen Categories

A Waldhausen category!® @ is a category with a zero object, 0
equipped with two classes of morphisms: weak equivalences (WE) and
cofibrations (CO) such that

e Iso(C) C WE(C) N CO(C).

e 0 — X € CO(C) for all X € Ob(C).

o If A — B is a cofibration and A — C' is any morphism in €, then

the pushout B L4 C of these two maps exists in € and
C — Bl C is a cofibration.

A— B

| |

C»—— Bl C

In particular, coproduct of two objects B LI C = B Ly C exists.

“Friedhelm Waldhausen. “Algebraic K-theory of spaces”. In: vol. 1126. Lecture
Notes in Math. Springer, Berlin, 1985, pp. 318-419.
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Definition of Waldhausen Categories

o Gluing axiom:

BuUsC

SV ¢
Ce—+~ A 5B
@’ l\\ A B’

A \4’ IS

B'Uy C'

o Extension axiom:
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Examples of Waldhausen Categories
@ The category of finitely generated projective R-Mod, for any
commutative ring R.
Injective maps (CO).
Isomorphisms (WE).
@ An exact category.

Monomorphisms (CO).
Isomorphisms (WE).

@ Category R(X) of spaces that retract to X.

Serre cofibrations (CO).
Maps that induce isomorphisms for chosen homology theory (WE).

@ The category of finite sets.

Inclusions (CO).
Isomorphisms (WE).
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e A spectrum is a sequence of pointed spaces {X;}i>o with the
structure maps XX; = X;y1.

@ The K-theory spectrum is an 2-spectrum, i.e., X,, ~ QX,,+1. So,
studying the base space is enough.

@ The K-theory space of a Waldhausen category €

s0 %_S—N @ @

/\
K(©)=0| NuSiC == Nusie = Nus,e = Nusse g

» N is the Nerve.
» () is the loop space.
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Se.-Construction

e wS)C: Trivial category (One object, its identity morphism)

o wS1C: wl

o wSsC:

Milind Gunjal
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S.-Construction

o wS3C:
F
I
D— F
[ 1
A—— B»—— C

e The K groups of a Waldhausen category C are

(€)= ma(K(C)).
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Homotopy groups of a Spectrum

For a spectrum X = {X,, },,>0, the following sequence exists due to
structure maps XX, — X,41.

Ti(Xn) — Tip1(Xnt1) — Tiga(Xng2) — -
The i** homotopy group of X is:

2

m; (X) := limmip g (Xg) -
p

e Since K(C) is an Q-spectrum
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Postnikov Tower for a connected pointed space X.
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Theorem (Homotopy Hypothesis (Grothendieck))

By taking classifying spaces and fundamental n-groupoids, there is an
equivalence between the theory of weak n-goupoids and that of

homotopy n-types.

Connected types

Algebraic model

Categorical model

1-type Group G G =%
2 type Crossed Module | G1 & G I'(G,) =
3-type Quadratic Module | Ha KN H, 9, Hy | T'(H,) = =

Milind Gunjal
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@ Muro and Tonks construct a stable crossed module
0
Gl —_— GO

explicitly using generators and relations.?!
» The generators for Gy are:
* [A] for any A € Ob(C).
» The generators for G are:
* [Ag = Ai] for any w.e.
* [A— B — B/A] for any cofiber sequence.
» Boundary maps are:
* 0([Ao = A1]) = —[A1] + [Ao].
* O([A — B — B/A]) = —|B] + [B/A] + [A].
» Satisfying certain relations.

e m(G.) = coker 0 = Ky(C).
(] TI'Q(G*> =ker 0 = Kl(G)

2Fernando Muro and Andrew Tonks. “The 1-type of a Waldhausen K-theory
spectrum”. In: Advances in Mathematics 216 (2007), pp. 179-183.
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Definition of Quadratic Modules

A quadratic module is a diagram

(Mcr)ab ® (Mcr)ab

b(
<
=

of homomorphisms between groups such that

@ 0: M — N is a nil(2)-module with Peiffer commutator map w.
wzy) =—z—y+z+y°°

Q@ 006=0.
@ L is an N-group and 6 and O are N-equivariant.
@ The action of N on L satisfies the following:

19" = 1+ w({6l} @ {m} + {m} @ {61}) for all | € L,m € M.
July 15%, 2025 15 /35




@ A free quadratic module is a quadratic module that satisfies a
certain universal property.

e Baues!3! defines a functor

Q: sSetg — FreeQuad

Q(X,) is defined using bases
> d22 <X2> — N, where N = <X1>
> ds: <X3> — M.

3Hans-Joachim Baues. Combinatorial Homotopy and 4-Dimensional Complezes.
Walter de Gruyter, 1991, pp. 177-187.
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@ Since the K-theory is a spectrum, the types must be stable, i.e.,
their homotopy groups simply shift after taking suspension.

@ The 2-type is stable due to its construction.

e For the 3-type, we pull the stable structure back along the
2-category that the quadratic module creates.
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@ Since the K-theory is a spectrum, the types must be stable, i.e.,
their homotopy groups simply shift after taking suspension.

@ The 2-type is stable due to its construction.

e For the 3-type, we pull the stable structure back along the
2-category that the quadratic module creates.

Theorem (Stable Homotopy Hypothesis)

Symmetric monoidal structure corresponds to topological stability. ®
Stable 2-types +—— Symmetric monoidal category +——— Stable Quadratic Module

~ ~ v

Stable 3-types +—— Symmetric monoidal 2-category «—— Stable Quadratic 2-Modules

“Nick Gurski, Niles Johnson, and Angélica M. Osorno. “The 2-dimensional stable
homotopy hypothesis”. In: Journal of Pure and Applied Algebra, Volume 223, Issue
10, 2019 (2019), pp. 4348-4383.

v
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e Recall: K(C) = Q|NwS,.C|.

@ We choose codiagonalization functor for geometric realization.

T: s?Sety —> sSetg

Codiagonalization
Let X be a bisimplicial set.

(TX)n = {(@om: T10-1,* » Tn) | diTpn—p = Al 1Tp+1VD}.

Here, dj and d 1 are vertical and horizontal face maps, respectively.

» T gives simpler cells compared to other possible functors.
» T preserves products.
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Cells of T(K(C))

For A, X,Y,U,V,IW € Ob(C)
o Xi: A

X —Y
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e Construct a free quadratic module from T'(K(C)).

e Bases for (Q(T'(K(C)))), are the non-degenerate elements of

(T(K(€)))n-
e For ( € (T(K(C))),, define

otherwise

| = {C if ¢ is non-degenerate,

) ==Y+ [Y/X]|+ Al

Ur—sVi—W |

~] ~] Ur—Ww V/U —— W/U XY Vi W
Ods || x Y =1~ 2l -1+ — |~

~] A Y/X A Y

A
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We now construct I': Quad — SM 2-Cat

e Given a Quad o:

o Ob(T'(c)) = N.
xg € N.

e 1-Mor(I'(o)) = M x N.

o L> x1 such that x; = xo - 9(f).
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We now construct I': Quad — SM 2-Cat

e Given a Quad o:

e Ob(I'(s)) = N.
xg € N.
e 1-Mor(I'(o)) = M x N.
o L> x1 such that x; = xo - 9(f).
e 2-Mor(I'(c)) =L x M x N.

/K\

i) @ !

f1

Such that fi = fo-0(a).
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e Vertical composition:

fo
N D
”LU —>f X = ZTo . a1a . I
e Horizontal composition:
fo 9o fogo
Zo . ﬂa _ | \ B N T = H) ﬂagoﬂ To
TTh e Fior
@ Monoidal structure
fo 9o Jo" g0
zo aﬂ @ ®yo Bﬂ Y1 = xoyo ﬂ(ayo)goﬂ 1Y
h T - I T ;;ﬁ"

g1
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Components of a Symmetric Monoidal 2-Category are:
o A 2-Category.
e Monoidal structure (®) on the 2-Category.
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Components of a Symmetric Monoidal 2-Category are:
o A 2-Category.
e Monoidal structure (®) on the 2-Category.
» Braiding () on the monoidal structure.
» Left (n——_) and right (n__ ) hexagonators.
» Syllepsis (7).

* Symmetry axiom.

% Pull back the symmetric structure to get a stabilized Quad.

% This gives us an algebraic model for a connected 3-type.

Milind Gunjal July 15%, 2025 25 /35



Main Theorem [Aldrovandi, G.]
Let € be a Waldhausen category.
Q@ Q(T(K(C))) is a connected 3-type of C.

© The braiding of the SM 2-Category is given by the following
diagram in FreeQuad.

QX Q(X)

/

X><X) — QX><X

\,m

me® f)=(-DVIf@e.
b is the shuffle map. (See [Ton03].)
X =T(N(wS.C)) € sSetg.
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@ We need to check that the following diagram commutes.

(Q(X) ®Q(X))1 —=2— (Q(X))

dﬁ sz

(Q(X) ® Q(X))2 —2— (Q(X))2

dgT Tds

(Q(X) @ Q(X))s —=2— (Q(X))s

July 15%, 2025 27 /35



[(Q(X)) x T(Q(X))

o

T(Q(X)

swap

Milind Gunjal

[(Q(X)) x T(Q(X))

o

>

@ Q(X))

5
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e Let Q,Q" € FreeQuad; then there exists a 2-functor

/\Q,Qlt F(Q) X F(Q,) — F(Q & Q/)

g *m(f@l) =(f®*)(*®b>
> Ao (la®yg) =
q07QO q17QO
1®gl / llgg
(@0, 41) —zp (@1, 41)
> Mg (Br) = ({x@ g} © {(F@ 1))
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Symmetric Structure of the SM 2-Cat ['(Q(T(K(C))))

For Y, Z € Ob(C), we get the braiding

Bz 2]+ Y] — [Y|+|Z]

7 —=YUZ Y ——YUuZz
Bviuz == |~ +1~]
A Y

We get this from the symmetry in Waldhausen categories and the
shuffle map

b: QU)RQ(V) = QU x V) here U,V € sSetg

b(z ®y) = —(sox, s1y) + (517, 0y), = € (Q(U))1,y € (Q(V))
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The other project

We analyze (symmetric) monoidal bi-categories using categorical
biextensions
» SM Bicategories are used to study higher algebraic structures like
K-theory, operads, etc.

Let B € Grp , and A € Ab, then a group F is an extension of B
by A if

0 — A— FE — B — 0 is a short exact sequence

If A — FE factors through the center of I, it is called a central
extension.

H?(B, A) = CentrExt(B, A).
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o Let GG be a group, A be a Picard groupoid. A monoidal category &
is called a categorical extension of G by A if:

0—A—E—G—0

e Let & be a monoidal category, then consider A = (m1(€) = %) and
G = 71'0(8)

> mo(E) = Ob(€)/ =
> m1(&) = Aute (I)

Theorem

With &, G, A as above, the monoidal category € can be classified by
H(G, (A = %)) = HY(G, A).

Theorem
A monoidal bicategory can be classified by H?(G,.A).

e To analyze symmetry, we need extra structure.
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o Let A€ Ab, G, H € Grp. A biextension E, of G x H by A is an
A-torsor!4) over G x H,

At B P GxH

that is a central extension in each variable and has the following
maps.

» Partial composition laws of A-torsors.
+1: By N By — Eppr yy 2,0 €Giy € H

+o: Ez,y /\A Egc,y’ — Em,yy’ , T € G;yay/ cH
They are required to be

@ associative
© compatible with each other, i.e.,

(fz,y +1 fm’,y) +2 (fzy’ +1 fz’,y/) = (fzyy +2 fz,y’) +1 (fz/y +2 fz/,y’)~

4A left A-torsor is a non-empty set S equipped with a A-action, p: A x § — S
such that (p,m2): A x S — S x S is an isomorphism.
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e For a (symmetric) monoidal category €, Breen considers
biextensions of 7y(€) x m(E) by m1 (&)

At B - P.Gx@G

where E,, = Homg(Y X, XY') are the A-torsors.

SEttore Aldrovandi and Milind Gunjal. “Symmetric Monoidal Bicategories and
Biextensions”. In: hittps://arziv.org/abs/2411.10550 (2024).
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e For a (symmetric) monoidal category €, Breen considers
biextensions of 7y(€) x m(E) by m1 (&)
A—E-L5GxG
where E,, = Homg(Y X, XY') are the A-torsors.

@ We consider categorical biextensions related to a monoidal
bicategory [E:
A—"se-LaGxG

» Partial composition laws of A-torsors €, , = Homg(Y X, XY).
t1:Euy N €y — Eauryy 1,2 €Giy € H

t2: 8y A Eoy — Eayy ,x €Gy,y € H

e We calculate cocycles explicitly using coherence conditions and
classify symmetric monoidal bicategories using the cocycles.?!

SEttore Aldrovandi and Milind Gunjal. “Symmetric Monoidal Bicategories and
Biextensions”. In: hittps://arziv.org/abs/2411.10550 (2024).
STy



T+——H— A—— N »—— K »—— S
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~ ~

T —— H
T
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Serre cofibrations

o In the category of topological spaces, a map f: X — Y is called a
Serre fibration, if for each CW-complex A, the map f has the RLP
w.r.t. the inclusion A x {0} — A x [0, 1]:

Ax {0} — X

>
3 -7
[ 27D

Ax|[0,1] — Y

e A map f is called a Serre cofibration if it has the LLP w.r.t.
acyclic fibrations.

Milind Gunjal July 1St, 2025 7/49



Some facts

e Examples of a model category which is not a Waldhausen
category: sSet

» It is a model category with monomorphisms as cofibrations, w.e. as
the maps that preserve homotopy groups after taking geometric
realization

» But not a Waldhausen category as it does not have the zero object
(initial object is the empty set and final object is A°(the one-point
sSet)).
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Simplicial Set

A simplicial set X € sSet is
o for each n € N a set X,, € Set (the set of n-simplices),
e for each injective map 0;: [n — 1] — [n] of totally ordered sets
(n]=0<1<---<n),
e a function d; : X,, — X,,—1 (the ith face map on n-simplices)
(n>0and 0<i<n),
e for each surjective map o; : [n + 1] — [n] of totally ordered sets,
e a function s; : X,, — X,,41 (the i degeneracy map on
n-simplices) (n > 0 and 0 < i < n),
@ such that these functions satisfy the simplicial identities:
didj = dj_ldi for ¢ <jJ
Sj_ldi, when ¢ < 7,
disj = 1, when ¢ = 5,5+ 1,
dei—17 when ¢ > j+ 1
5is; = sj415; when 1 < j
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Nerve of a category

Nerve of a small category C is a simplicial set N(C).
e Np(C) = 0-cells = Ob(C):
o A

e Ni(€) = 1-cells = Morphisms of C:

A, L 4,

@ Ny(C) = 2-cells = A pair of composable morphisms in C:
A3
f20f/' r\fz
A1 7 > A2
i.e., generated from A £> As f—2> As.

Milind Gunjal July 1St, 2025 10 /49



@ N3(C) = 3-cells = A triplet of composable morphisms in C:

3
J’f3
faof1 A, f2
faofaofi f3ofe

f1

i.e., generated from A f—1> Ao ﬁ) Az f—3> Ay.
@ and so on.

) di : Nk(e) — Nk 1(@)'

Ay

~
b
[\

(A = - = A; 1—>A —>A2+1—> - = Ag)

|

fiofi

(A1—>~-AZ‘_1 —_1>AZ+1—>Ak)

it Ng(€C) — Ni11(C):
(A1—>~--—>Ai—>--~—>Ak)|—>(A1—>---Ai£>AZ-—>---A,€).
July 15%,2025 11 /49



Definition 1

A Picard groupoid P is a symmetric monoidal category such that all
morphisms are invertible and tensoring with any object X in P yields
an equivalence of categories

X :P5 P
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Definition 1

A Picard groupoid P is a symmetric monoidal category such that all
morphisms are invertible and tensoring with any object X in P yields
an equivalence of categories

X®_: PSP

Definition 2

A Picard 2-groupoid P is a symmetric monoidal 2-category such that
all morphisms are invertible up to 2-morphisms, all 2-morphisms are
invertible, and tensoring with any object X in P yields an equivalence
of 2-categories

X : PSP
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Example 3

The prototypical example of a determinant functor on an exact
category is the following. Suppose X is a scheme or manifold. Then
the rank of a vector bundle E over X is a locally constant function
rk F : X — Z, and we can define a determinant functor

det : vect(X) — PicZ(X) as follows:

det(E) = (rk E, /\gkXEE)
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e Associativity: Given a staircase commutative diagram

9
I

O: cl —— ¢9f
f T g T

X >y Y A

the following diagram in P commuteS'

det(Z

det (Cgf) ® det(X det (C9) ® det(Y)

det(A )®1T Tl@det(Af)
(det (C9) @ det (C7)) @ det(X) ——————— det (CY) @ (det (CF) @ det(X))

assp
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e Commutativity: Given two objects X and Y in C, there are

A X1y xuy 2yy,
Ay : Yy 2. xuy Py X,

then the following diagram commutes:

det(X LY)
det(Y) ® det(X commy > det(X) ® det(Y)

Milind Gunjal July 1St, 2025 15 /49



mult ¢

F(det (C1)) ® f(det(X)) F(det (OF) @ det(X)) —L9E) - pdet(v))

a(Cf)®a(X)l la(y)
det’ (Cf) ® det’(X)

det’(A)

Milind Gunjal July 1St, 2025 16 /49



Moreover, if there is another factorization

e —d Ly
det’ F

then there exists a unique tensor natural transformation 8 : f — f’
such that

c—d Ly

e det Ve
det’ ‘f - >< d
P

Milind Gunjal July 1St, 2025 17 /49



Definition 15
A quadratic 2-module (w,d,0) is a diagram

ceC

/lw
L% spmMm—9% 4N

© Commutators in L satisfy the following:

U] =—1—U+1+0 =w{5l} @ {6I'}) for all I,V € L.
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Remark

Homotopy groups m, (o) of a quadratic 2-module 0 = (w, §,0) are
defined as follows:

e 71(0) = coker(9)
e my(o) = ker(9)/im(9)
e m3(0) = ker(9)

Milind Gunjal July 15%, 2025 19 /49



An Algebraic Model for Connected 2-type

A stable quadratic module o is a commutative diagram of group
homomorphism

Nab ® Nab

wl Wutator
[6)

M ———3N
such that

Q@ w{Im} @ {om'}) =[m,m| =—-m—m'+m+m/, for m,m’ € M,
Q@ w{n}e{n}+{n'}®{n}) =0, for n,n’ € N.

Remark

The homotopy groups of o are:
e 7o(o) = coker 0,
o 7(0) = ker 0.
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Suspension

Smash product

Let X,Y be two spaces. Then their smash product
XANY =XxY/XVY.

Example 4
ST A St =52 in fact S A 8™ = S"™ for any n,m € N.

Remark
e X ~SIAX.
o YrX xSk X,

Milind Gunjal
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The face and degeneracy maps are defined as follows.
(v ) v h h h
dz(fU) = (di 20, di_121, 0 Ay w1, di Wiy, di w0 df 5Un):

v v v h h h
si(w) = (870, 8]_1T1,+++ , 80Tis 8 Tiy ] Tit 1,7+, 8 Tn).
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Remark
e In a category of R-modules, we have

Hom(X ® A,Y) = Hom(X, Hom(A)Y)).

Similarly, in case of pointed topological spaces, smash product
plays the role of the tensor product. If A, X are compact
Hausdorff then we have

Hom(X A A,Y) 2 Hom(X, Hom(A,Y)).

So, in particular, for A = S', we have

Hom(XX,Y) = Hom(X, Hom(S',Y)) = Hom(X, QY).

Here QY carries compact-open topology.

This implies, the suspension functor €2 - X, the loop space functor.
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e Given a Waldhausen category C, 5;C is also a Waldhausen
category. A morphism
AO — BO E— Bo/AO

I

A1 — Bl —> Bl /A1
is called a cofibration if the vertical maps are cofibrations and the
map from A; Uyg, Bop — Bj is a cofibration.
Ag By By /Ao

I
Ay Ua, Bo
. N

S

A By By /A

e With a similar southern arrow condition, S,,C is a Waldhausen
category for every n € N. (See [GH99|,[Zak14].)

e Hence, one can consider Se(S,C) and keep on doing this. This will
give us a spectrum.
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Definition 5

Let X and Y be two topological spaces, and let C(X,Y") denote the set
of all continuous maps from X to Y. Given a compact subset K of X
and an open subset U of Y, let V(K,U) denote the set of all functions
f € C(X,Y) such that f(K) C U. Then the collection of all such
V(K,U) is a subbase for the compact-open topology on C'(X,Y).

@ So for each bonding map o,: ¥XX,, = X1, there is a
corresponding map o, : X, = QX,41.

e When 7, is a weak equivalence for each n, X is called an
Q-spectrum.
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Detailed SQuad structure for a Waldhausen category®

@ The generators for dimension 0 are:
» [A] for any A € 0b(C).
@ The generators for dimension 1 are:
> [Ag = Ay] for any w.e.
» [A— B — B/A] for any cofiber sequence.
e such that the following relations hold (i.e., we define 9, w):
A([Ao = A1]) = —[A] + [A].

v

> (A — B — B/A]) = —[B] + [B/A] + [A].

» [0]=0.

>[4 4] =0.

> [AXS A 0]=0,0— A 4] =0.

» For any composable weak equivalences A = B = C,

[A=C]=[B=C]+[A> Bl

5Fernando Muro and Andrew Tonks. “The 1-type of a Waldhausen K-theory
spectrum”. In: Advances in Mathematics 216 (2007), pp. 179-183.
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» For any A, B € 0b(@), define the w as follows:

—[B>i—2>A]_[BL»A]+[A>i—1>A]_[Bﬁ»B].
Here, i1 iz
A— A]|B=——= B
P1 p2
are natural inclusions and projections of a coproduct in C.
» For any commutative diagram in € as follows:

AO — By —» Bo/AO

A1 — Bl e Bl/Al

we have

[Ao = Ai] + [Bo/Ao = B1/Ai] + ([A], =[B1/A1] + [Bo/Ao))

7[A1 — B1 - Bl/Al] + [BO :—> Bl] + [A() — BO - BQ/A()}
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» For any commutative diagram consisting of cofiber sequences in C

as follows:
C/B
B/A —— C/A
A B C
we have,

[Ams C — C/A| + [B/A — CJA — C/B] + ([A], ~[C/A| + [C/B] + [B/A]).
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Definition 6

A (strict) 2-category € is comprised of the following:
@ 0-Cells (Objects): Denoted by Ob(C).

o 1-Cells (Morphisms): For A, B € 0b(C), a set Hom(A, B) of 1-cells
from A to B, also known as morphisms. A 1-cell is often written

textually as f : A — B or graphically as A 4 B.

o 2-Cells: For A, B € 0b(C), f,g € Hom(A, B), a set Face(f, g) of
2-cells from f to g. A 2-cell is often written textually as
a: f=g:A— B or graphically as follows:

o 1-Composition: For each chain of 1-cells A i) B C, a 1-cell
AL ¢
July 15%, 2025 29 / 49




Definition 6
@ Vertical 2-Composition: For a chain of 2-cells

A

A g— B ra2-cel 4 a;ﬁﬂ B.
N S \7/
f

e Horizontal 2-Composition: For each chain of 2-cells

A “W B ﬁﬂ c > a 2-cell
\f/{ \g/
A o ﬂ C.
\f_/{
i

Milind Gunjal
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Definition 6
@ Associativity: For all the compositions.

o Identities of 1-cells and 2-cells exist and are compatible with all
the compositions.

o 2-Interchange: Every clover of 2-cells

A )

A g . B g s O satisfies
\\aﬂ/ W
f f!

(o 8) * (/5 ') = (ax); (B + B).
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Definition 7

Let € be a Waldhausen category and P be a Picard 2-groupoid. A
2-determinant functor Det : € — P consists of a functor,
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Definition 7

Let € be a Waldhausen category and P be a Picard 2-groupoid. A
2-determinant functor Det : € — P consists of a functor,

Det : we(C) — P,
with additive data: for any A, a morphism
det(A): det (CT) @ det(X) — det(Y)

natural with respect to weak equivalences, and the following conditions
must be satisfied.
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e Associativity: Given a staircase

Cg
Ofg: CTf — CTgf
Xyt sy 9,7
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e Associativity: Given a staircase

Cg
Ofg: CTf — CTgf
Xyt sy 9,7

The following 2-morphism exists in P:
Det(Z)

Det(4,) W
Det (C¥/) © Det(X) \ Det(C9) @ Det(Y)
Det(A)@lT Pet(©r.0) Tl@Det(Af)
(Det(C9) @ Det(CF)) @ Det(X)
such that

Det(C9) @ (Det(CT) @ Det(X))

assp
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Given a staircase as follows:
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Given a staircase as follows:

w sy X2 sy I 7

We have the following cocycle condition:
Det (O y) - Det (O,) = (Det (0,,4) ® Det(W)) - Det (BOgy) - (Det (C*) @ Det (O4,4)) .(1)
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e Commutativity: Given two objects X and Y in C, the following
2-morphism exists in P:

Det(X LY)

nx,y
Det(X) @ Det(Y) > Det(Y) @ Det(X)

commeaop
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e Commutativity: Given two objects X and Y in C, the following
2-morphism exists in P:

Det(X UY)
]D)Et(y7 Wl)
e
Det(X) ® Det(Y) I > Det(Y) @ Det(X)

such that, given three objects X,Y, Z in C,

Z

|

Oxyz: Y — YUz

T T

X — XY — XuYu~z
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e Commutativity: Given two objects X and Y in C, the following
2-morphism exists in P:

Det(X LY)

nx,y
Det(X) @ Det(Y) > Det(Y) @ Det(X)

commeaop

such that, given three objects X,Y, Z in C,

Z

|

Oxyz: Y — YUz

T T

X — XY — XuYu~z

Then the following holds.
(LHexp) peg(x)pet(v),pet(2) - (Det(Y) @ nx,z) - Det (Oz.x,y) - (nx,y ® Det(Z))
=Det(Ox,zy) - x,y[1z - Det (Ozy,x) -
July 15%, 2025 35 /49



Definition 8

We define the 2-groupoid of virtual objects in the same way as we did
in definition ?7.
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Proposition 9

Let € be a Waldhausen category. The naturality of the monoidal
product in the Picard 2-groupoid of the virtual objects of C is tied to the
w of the quadratic module associated to C.

Proof.

Let puyt 4 be the 2-morphism that exists due to the naturality of the
braiding as follows.

+[X] B[X] [¥] X] +

g—}—fl / J’f_i_g
l X/
Brxn, iy
This translates to the following equation.

8 (1sg) = =B = f = 9 + By + 2 + 9.

Milind Gunjal July 15,2025 37 /49



Proof.

This expands to give us the following diagram.

Bix1,1v1

> [+ [Y)

Bix, v

Here w(f,g9) = w ({[f]} ® {[Q[X]] })

This can also be viewed as the monoidal product +: € x € — € being
an oplax functor. ]
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Oplax functor

If F': € — D is a functor such that, for 1-cells f, g, we have
F(fog) = F(f)o F(g) (but not exactly equal). Then the functor F is
called as an oplax functor.
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H?(B, A) CentrExt(B, A)

Proof.
For [¢] € H?(B,A): c: B x B — A. Define a group E = U(G) x U(A)
with,
(b1,a1) - (b2, a2) = (b1 - b2, a1 + a2 + c(by, b))
The map E & B is projection, and A % F is inclusion.

For the other direction, choose a section s : U(B) — U(F), define
c:BxB— Aas

c(b1,bz) = 5(b1)s(ba)s(bybo) L.

Applying p to ¢(by, ba) gives us identity, hence ¢(b1, b2) € ker(p), hence
by exactness, it belongs to A. O
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e Let GG be a group, S be a right G-torsor and T be a left G-torsor,
then we define the contracted product of S and T' by the G-torsor:

SAAT := 8 x T/[(sg,t) ~ (s, gt)].
where G acts on [(s,t)] as

g- (s, 0)] = [(sg,)]-
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Definition 10

Let F be a free group and let f: F' — N be a homomorphism. We say
that a nil(n)-module 9: M — N is a free nil(n)-module with basis f, if
a homomorphism i: F' — M is given such that d o i = f and such that
the following universal property is satisfied. For each nil(n)-module

d': M'" — N’ and for each commutative diagram of unbroken arrows

\/
1.

N— 0 N

there is a unique map (m,n): @ — @ in cross(n)—the category of
nil(n)-modules. A nil(n)-module 9: M — N is called totally free if 0 is
free as above and N is a free group.
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Definition 11

Let 9: M — N be a nil(2)-module and let f: FF — M be a
homomorphism where F' is a free group and for which 9o f = 0. We
say that a quadratic module (w, d,9) is a free quadratic module with
basis f if a homomorphism i: F' — L is given such that é o4 = f and
the following universal property is satisfied. Consider any commutative
diagram of broken arrows

L 0 M J N

i) F m n

i

I - M N’
) o'

where (', 0’,0") is a quadratic module, where (m,n):  — 9" is a map
of nil(2)-modules, [f is a homomorphism, then there exists a unique
map (I, m,n) in the category of quadratic modules. We say (w,d,0) is
a totally free quadratic module if it is free and 0 is a totally free
nil(2)-module.
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Construction—Free Nil(n)-module

A free(n)-module with basis f: (Z) — N can be constructed as follows.
Define a pre-crossed module 0¢: (Z x N) — N where

O0f(x,) = —a+ f(x) + o, and the action is defined as

(z,a)? = (z,a + B). Then a free nil(n)-module can be constructed by
modding out by the (n + 1) Peiffer commutator.

rn(0f): (Z X N)/Ppy1(95) = N
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Construction—Free Quadratic Module

We can now construct a free quadratic module from a given
nil(2)-module 9: M — N and a basis f: F' — L. Using universal
property of sum of nil(n)-modules, we have

0 —— 0gVO +— 0

Sl

)
J—2 5 cpecy® DT, cer
w c-push v L B w
: ' NS
. . N J
(EV M)y Vi) M2, N

where C' = (M)2", Cf is the free (m10)-module generated by Z ,

(E\/ M)2 = ker(O, 1), J = (CE X CE) D (CE X C) D (C® CE), and w is
the Peiffer commutator. The pushout square is called central because
the vertical maps need to be central.
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Definition 12
A (p, q)-shuffle is a pair of strictly increasing functions

UO:{0717"'7(]_1}—){0717"'7p+q_1}

01:{0717"'7p_1}—>{071a""p+q_1}

with disjoint images.

Each shuffle (0, 01) has a sign, sg(o), where o is the permutation of
{0,--- ,p+q— 1} as follows

(i) = {Ul(i) fori<p

oo(i —p) forp<i<p+tq

Milind Gunjal July 1St, 2025 46 /49



Proposition 13

Let K, L be reduced simplicial sets. Let p(K), p(L) denote the associated
crossed complexes. There exists a crossed complex homomorphism

b: p(K) ® p(L) — p(K x L)

natural in K, L, defined for x € K,,y € Ly by

—(s07, 519) + (s12, 50y) for (p,q) = (1,1)
b(.’E ® y) = Z SQ(U) : (500337 501y) for (p7 Q) 7& (1’ 1)

(00,01)€Sp,q
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Definition 14
An Se-category C, is a simplicial category such that
o Gy = *, €, has finite coproducts for all n > 0,

o Faces and degeneracies preserve the coproducts.
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Definition 14

An Se-category C, is a simplicial category such that
o Gy = *, €, has finite coproducts for all n > 0,
o Faces and degeneracies preserve the coproducts.

o G, is endowed with a simplicial category we(C,) containing all

isomorphisms iso(Cs) C we(C,), whose morphisms are called weak
equivalences.

Finite coproducts of weak equivalences are weak equivalences.
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Definition 14

An Se-category C, is a simplicial category such that
o Gy = *, €, has finite coproducts for all n > 0,
o Faces and degeneracies preserve the coproducts.

o G, is endowed with a simplicial category we(C,) containing all
isomorphisms iso(Cs) C we(C,), whose morphisms are called weak
equivalences.

Finite coproducts of weak equivalences are weak equivalences.

Example 15
Given a Waldhausen category €, SoC is an S,-category.
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Definition 14

An Se-category C, is a simplicial category such that
o Gy = *, €, has finite coproducts for all n > 0,
o Faces and degeneracies preserve the coproducts.

o G, is endowed with a simplicial category we(C,) containing all
isomorphisms iso(Cs) C we(C,), whose morphisms are called weak
equivalences.

Finite coproducts of weak equivalences are weak equivalences.

Example 15
Given a Waldhausen category €, SoC is an S,-category.

Remark

e For an S,-category C,, and a Picard 2-groupoid P, one can define
2-determinant functors Det: C4 — P (see [MTW15]).

@ One can also define a quadratic module and the associated Picard
2-groupoid that models the 2-groupoid of virtual objects of C,.
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o A biextension E — B x B is anti-symmetric if the symmetric
biextension E A ¢*FE is trivial as a symmetric biextension,

» 0: B x B — B x B is the permutation map.
e F is alternating if A*E itself is split, in a manner compatible with
the canonical splitting of (A*E)2.
» A: B — B x B is the diagonal
@ The monoidal structure on € is symmetric precisely when the
associated biextension given by the commutator map is alternating
and the underlying biextension admits a trivialization compatible
with the anti-symmetric structure.
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