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This thesis consists of two parts:

1 Connected 3-type of K-theory of Waldhausen Categories.

2 Symmetric Monoidal Bicategories and Biextensions.[1]

1Ettore Aldrovandi and Milind Gunjal. “Symmetric Monoidal Bicategories and
Biextensions”. In: https://arxiv.org/abs/2411.10530 (2024).

Milind Gunjal July 1st, 2025 2 / 35



Waldhausen Category

Spectrum {Xi}i≥0 with interesting homotopy groups

n-types (in terms of Algebraic Models)

Stabilize the Algebraic Models
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Definition of Waldhausen Categories

A Waldhausen category[a] C is a category with a zero object, 0
equipped with two classes of morphisms: weak equivalences (WE) and
cofibrations (CO) such that

Iso(C) ⊆ WE(C) ∩ CO(C).

0 → X ∈ CO(C) for all X ∈ Ob(C).

If A ↣ B is a cofibration and A → C is any morphism in C, then
the pushout B ⊔A C of these two maps exists in C and
C ↣ B ⊔A C is a cofibration.

A B

C B ⊔A C

▶ In particular, coproduct of two objects B ⊔ C = B ⊔0 C exists.

aFriedhelm Waldhausen. “Algebraic K-theory of spaces”. In: vol. 1126. Lecture
Notes in Math. Springer, Berlin, 1985, pp. 318–419.
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Definition of Waldhausen Categories

Gluing axiom:
B ⊔A C

C A B

C ′ A′ B′

B′ ⊔A′ C ′

∼∼ ∼ ∼

Extension axiom:
A B B/A

A′ B′ B′/A′

∼ ∼ ∼
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Examples of Waldhausen Categories
1 The category of finitely generated projective R-Mod, for any

commutative ring R.
▶ Injective maps (CO).
▶ Isomorphisms (WE).

2 An exact category.
▶ Monomorphisms (CO).
▶ Isomorphisms (WE).

3 Category R(X) of spaces that retract to X.
▶ Serre cofibrations (CO). To apdx
▶ Maps that induce isomorphisms for chosen homology theory (WE).

4 The category of finite sets.
▶ Inclusions (CO).
▶ Isomorphisms (WE).

To appendix
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A spectrum is a sequence of pointed spaces {Xi}i≥0 with the
structure maps ΣXi → Xi+1.

The K-theory spectrum is an Ω-spectrum, i.e., Xn ≃ ΩXn+1. So,
studying the base space is enough.

The K-theory space of a Waldhausen category C

K(C) = Ω

∣∣∣∣∣∣∣∣∣∣∣∣
NwS0C NwS1C NwS2C NwS3C · · ·

s0
si

di di

si

di

si

di

∣∣∣∣∣∣∣∣∣∣∣∣
▶ N is the Nerve. To Apdx
▶ Ω is the loop space.
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S•-Construction

wS0C: Trivial category (One object, its identity morphism)

wS1C: wC

A

B

∼

wS2C:

C ′

A′ B′

C

A B

∼

∼
∼
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S•-Construction

wS3C:

F

D E

A B C

The K groups of a Waldhausen category C are

Kn(C) := πn(K(C)).
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Homotopy groups of a Spectrum

For a spectrum X = {Xn}n≥0, the following sequence exists due to
structure maps ΣXn → Xn+1.

πi(Xn) −→ πi+1(Xn+1) −→ πi+2(Xn+2) −→ · · ·

The ith homotopy group of X is:

πsi (X) := lim−→
k

πi+k (Xk) .

Since K(C) is an Ω-spectrum

Kn(C) = πsn(K(C)).
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Waldhausen Category

Spectrum {Xi} with interesting homotopy groups

n-types (in terms of Algebraic Models)

Stabilize the Algebraic Models

Milind Gunjal July 1st, 2025 11 / 35



...

PnX n-type

... πi(PnX) = 0, i > n

P2X 2-type

. . . P1X 1-type

X ∗

jn

j3

j2

j1

i0

i1

i2

in

Postnikov Tower for a connected pointed space X.
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Theorem (Homotopy Hypothesis (Grothendieck))

By taking classifying spaces and fundamental n-groupoids, there is an
equivalence between the theory of weak n-goupoids and that of
homotopy n-types.

Connected types Algebraic model Categorical model

1-type Group G G ⇒ ∗
2-type Crossed Module G1

∂−→ G0 Γ(G∗) ⇒ ∗
3-type Quadratic Module H2

δ−→ H1
∂−→ H0 Γ(H∗) ⇒ ∗
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Muro and Tonks construct a stable crossed module

G1 G0
∂

explicitly using generators and relations.[2]

▶ The generators for G0 are:
⋆ [A] for any A ∈ Ob(C).

▶ The generators for G1 are:
⋆ [A0

∼−→ A1] for any w.e.
⋆ [A ↣ B ↠ B/A] for any cofiber sequence.

▶ Boundary maps are:
⋆ ∂([A0

∼−→ A1]) = −[A1] + [A0].
⋆ ∂([A ↣ B ↠ B/A]) = −[B] + [B/A] + [A].

▶ Satisfying certain relations. To appendix

π1(G∗) = coker ∂ = K0(C).

π2(G∗) = ker ∂ = K1(C).

2Fernando Muro and Andrew Tonks. “The 1-type of a Waldhausen K-theory
spectrum”. In: Advances in Mathematics 216 (2007), pp. 179–183.
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Definition of Quadratic Modules

A quadratic module is a diagram

(M cr)ab ⊗ (M cr)ab

L M N

wω

δ ∂

of homomorphisms between groups such that

1 ∂ : M −→ N is a nil(2)-module with Peiffer commutator map w.

w(x⊗ y) = −x− y + x+ y∂x

2 ∂ ◦ δ = 0.

3 L is an N -group and δ and ∂ are N -equivariant.

4 The action of N on L satisfies the following:

l∂m = l + ω({δl} ⊗ {m}+ {m} ⊗ {δl}) for all l ∈ L,m ∈ M.

To appendixMilind Gunjal July 1st, 2025 15 / 35



A free quadratic module is a quadratic module that satisfies a
certain universal property. To Apdx

Baues[3] defines a functor

Q : sSet0 −→ FreeQuad

Q(X•) is defined using bases
▶ d2 : ⟨X2⟩ −→ N , where N = ⟨X1⟩.
▶ d3 : ⟨X3⟩ −→ M .Apdx

3Hans-Joachim Baues. Combinatorial Homotopy and 4-Dimensional Complexes.
Walter de Gruyter, 1991, pp. 177–187.
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Since the K-theory is a spectrum, the types must be stable, i.e.,
their homotopy groups simply shift after taking suspension.

The 2-type is stable due to its construction. To main

For the 3-type, we pull the stable structure back along the
2-category that the quadratic module creates.

Theorem (Stable Homotopy Hypothesis)

Symmetric monoidal structure corresponds to topological stability.[a]

Stable 2-types Symmetric monoidal category Stable Quadratic Module

Stable 3-types Symmetric monoidal 2-category Stable Quadratic 2-Modules

...
...

...

aNick Gurski, Niles Johnson, and Angélica M. Osorno. “The 2-dimensional stable
homotopy hypothesis”. In: Journal of Pure and Applied Algebra, Volume 223, Issue
10, 2019 (2019), pp. 4348–4383.
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Waldhausen Category

Spectrum {Xi} with interesting homotopy groups

n-types (in terms of Algebraic Models)

Stabilize the Algebraic Models
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Recall: K(C) = Ω|NwS•C|.
We choose codiagonalization functor for geometric realization.

T : s2Set0 −→ sSet0

Codiagonalization

Let X be a bisimplicial set.

(TX)n = {(x0,n, x1,n−1, · · · , xn,0) | dv0xp,n−p = dhp+1xp+1∀p}.

Here, dv0 and dhp+1 are vertical and horizontal face maps, respectively.

▶ T gives simpler cells compared to other possible functors.
▶ T preserves products.

To apdx
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Cells of T (K(C))

For A,X, Y, U, V,W ∈ Ob(C)

X1: A

X2:

X Y

A

∼

X3:

U V W

X Y

A

∼ ∼

∼
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Construct a free quadratic module from T (K(C)).

Bases for (Q(T (K(C))))n are the non-degenerate elements of
(T (K(C)))n.

For ζ ∈ (T (K(C)))n, define

|ζ| =

{
ζ if ζ is non-degenerate,

0 otherwise

d2


∣∣∣∣∣∣∣∣
X Y

A

∼

∣∣∣∣∣∣∣∣
 = −|Y |+ |Y/X|+ |A|.

d3



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U V W

X Y

A

∼ ∼

∼

∣∣∣∣∣∣∣∣∣∣∣∣∣∣


=

∣∣∣∣∣∣∣∣
U W

A

∼

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
V/U W/U

Y/X

∼

∣∣∣∣∣∣∣∣∣
|A|

−

∣∣∣∣∣∣∣∣
X Y

A

∼

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
V W

Y

∼

∣∣∣∣∣∣∣∣.
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Waldhausen Category

Spectrum {Xi} with interesting homotopy groups

n-types (in terms of Algebraic Models)

Stabilize the Algebraic Models
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We now construct Γ: Quad −→ SM 2-Cat

Given a Quad σ :

L M Nδ ∂

To appendixOb(Γ(σ)) = N .
x0 ∈ N .

1-Mor(Γ(σ)) = M ⋉N .

x0 x1
f

such that x1 = x0 · ∂(f).

2-Mor(Γ(σ)) = L⋉M ⋉N .

x0 x1α

f1

f0

Such that f1 = f0 · δ(α).
To Apdx
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Vertical composition:

x0 x1 := x0 x1

α1

α1α2

f0

f2

f1

α2

f0

f2

Horizontal composition:

x0 x1 x2 := x0 x2α β αg0β

f0

f1

g0

g1

f0g0

f1g1

Monoidal structure:

x0 x1α

f1

f0

⊗ y0 y1β

g1

g0

:= x0y0 x1y1(αy0 )g0β

f
y0
1 g1

f
y0
0 g0
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Components of a Symmetric Monoidal 2-Category are:

A 2-Category.

Monoidal structure (⊗) on the 2-Category.

▶ Braiding (β) on the monoidal structure.
▶ Left (η−|−−) and right (η−−|−) hexagonators.
▶ Syllepsis (γ).

⋆ Symmetry axiom.

⋆ Pull back the symmetric structure to get a stabilized Quad.

⋆ This gives us an algebraic model for a connected 3-type.
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Main Theorem [Aldrovandi, G.]

Let C be a Waldhausen category.

1 Q(T (K(C))) is a connected 3-type of C.

2 The braiding of the SM 2-Category is given by the following
diagram in FreeQuad.

Q(X)⊗Q(X) Q(X)⊗Q(X)

Q(X ×X) Q(X ×X)

Q(X)

b

τ

b

Q(⊔)

Q(symm)

Q(⊔)

▶ τ(e⊗ f) = (−1)|e||f |f ⊗ e.
▶ b is the shuffle map. (See [Ton03].) To apdx
▶ X = T (N(wS•C)) ∈ sSet0.
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We need to check that the following diagram commutes.

(Q(X)⊗Q(X))1 (Q(X))1

(Q(X)⊗Q(X))2 (Q(X))2

(Q(X)⊗Q(X))3 (Q(X))3

⊔◦b

d2

⊔◦b

d2

d3

⊔◦b

d3
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Γ(Q(X))× Γ(Q(X)) Γ(Q(X))× Γ(Q(X))

Γ(Q(X))

Γ(Q(X))⊠ Γ(Q(X)) Γ(Q(X))⊠ Γ(Q(X))

Γ(Q(X))

Γ(Q(X)⊗Q(X)) Γ(Q(X)⊗Q(X))

Γ(Q(X))

Q(X)⊗Q(X) Q(X)⊗Q(X)

Q(X)

swap

c

β

c

λ λ

τ

⊔◦b

Γ

⊔◦b

Γ

To Apdx
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Let Q,Q′ ∈ FreeQuad; then there exists a 2-functor

λQ,Q′ : Γ(Q)⊠ Γ(Q′) −→ Γ(Q⊗Q′).

▶ λ0
Q,Q′(q, q′) := q ⊗ ∗+ ∗ ⊗ q′.

▶ λ1
Q,Q′(f ⊠ 1b) := (f ⊗ ∗)(∗⊗b).

▶ λ1
Q,Q′(1a ⊠ g) := ∗ ⊗ g.

(q0, q
′
0) (q1, q

′
0)

(q0, q
′
1) (q1, q

′
1)

f⊠1

1⊠g 1⊠g
Σf,g

f⊠1

▶ λ2
Q,Q′ (Σf,g) := ω

(
{∗ ⊗ g} ⊗

{
(f ⊗ ∗)(∗⊗b)

})
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Symmetric Structure of the SM 2-Cat Γ(Q(T (K(C))))

For Y, Z ∈ Ob(C), we get the braiding

β|Y |,|Z| : |Z|+ |Y | −→ |Y |+ |Z|

β|Y |,|Z| = −

∣∣∣∣∣∣∣∣
Z Y ⊔ Z

Z

∼

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
Y Y ⊔ Z

Y

∼

∣∣∣∣∣∣∣∣
We get this from the symmetry in Waldhausen categories and the
shuffle map

b : Q(U)⊗Q(V ) → Q(U × V ) here U, V ∈ sSet0

b(x⊗ y) = −(s0x, s1y) + (s1x, s0y), x ∈ (Q(U))1, y ∈ (Q(V ))1

To apdx
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The other project

We analyze (symmetric) monoidal bi-categories using categorical
biextensions

▶ SM Bicategories are used to study higher algebraic structures like
K-theory, operads, etc.

Let B ∈ Grp , and A ∈ Ab, then a group E is an extension of B
by A if

0 −→ A −→ E −→ B −→ 0 is a short exact sequence

If A → E factors through the center of E, it is called a central
extension.

H2(B,A) ∼= CentrExt(B,A). To appendix
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Let G be a group, A be a Picard groupoid. A monoidal category E

is called a categorical extension of G by A if: To Apdx

0 −→ A −→ E −→ G −→ 0

Let E be a monoidal category, then consider A = (π1(E) ⇒ ∗) and
G = π0(E).

▶ π0(E) = Ob(E)/ ∼=
▶ π1(E) = AutE(I)

Theorem

With E, G,A as above, the monoidal category E can be classified by
H2(G, (A ⇒ ∗)) = H3(G,A).

Theorem

A monoidal bicategory can be classified by H3(G,A).

To analyze symmetry, we need extra structure.
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Let A ∈ Ab, G,H ∈ Grp. A biextension E, of G×H by A is an
A-torsor[4] over G×H,

A E G×Hi p

that is a central extension in each variable and has the following
maps.

▶ Partial composition laws of A-torsors. To Appendix

+1 : Ex,y ∧A Ex′,y −→ Exx′,y , x, x′ ∈ G; y ∈ H

+2 : Ex,y ∧A Ex,y′ −→ Ex,yy′ , x ∈ G; y, y′ ∈ H

They are required to be
1 associative
2 compatible with each other, i.e.,

(fx,y +1 fx′,y)+2 (fx,y′ +1 fx′,y′) = (fx,y +2 fx,y′)+1 (fx′,y +2 fx′,y′).

4A left A-torsor is a non-empty set S equipped with a A-action, ρ : A× S → S
such that (ρ, π2): A× S → S × S is an isomorphism.
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For a (symmetric) monoidal category E, Breen considers
biextensions of π0(E)× π0(E) by π1(E) To Apdx

A E G×Gi p

where Ex,y = HomE(Y X,XY ) are the A-torsors.

We consider categorical biextensions related to a monoidal
bicategory E:

A E G×Gi p

▶ Partial composition laws of A-torsors Ex,y = HomE(Y X,XY ).

+1 : Ex,y ∧A Ex′,y −→ Exx′,y , x, x′ ∈ G; y ∈ H

+2 : Ex,y ∧A Ex,y′ −→ Ex,yy′ , x ∈ G; y, y′ ∈ H

We calculate cocycles explicitly using coherence conditions and
classify symmetric monoidal bicategories using the cocycles.[5]

5Ettore Aldrovandi and Milind Gunjal. “Symmetric Monoidal Bicategories and
Biextensions”. In: https://arxiv.org/abs/2411.10530 (2024).
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T H A N K S

T H A N K

T H A N

T H A

T H

T

∼ ∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

∼ ∼ ∼

∼ ∼

∼
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Serre cofibrations

In the category of topological spaces, a map f : X → Y is called a
Serre fibration, if for each CW-complex A, the map f has the RLP
w.r.t. the inclusion A× {0} → A× [0, 1]:

A× {0} X

A× [0, 1] Y

f
∃

A map f is called a Serre cofibration if it has the LLP w.r.t.
acyclic fibrations. To main
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Some facts

Examples of a model category which is not a Waldhausen
category: sSet

▶ It is a model category with monomorphisms as cofibrations, w.e. as
the maps that preserve homotopy groups after taking geometric
realization

▶ But not a Waldhausen category as it does not have the zero object
(initial object is the empty set and final object is ∆0(the one-point
sSet)).

To main
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Simplicial Set

A simplicial set X ∈ sSet is To main

for each n ∈ N a set Xn ∈ Set (the set of n-simplices),

for each injective map ∂i : [n− 1] → [n] of totally ordered sets
([n] := (0 < 1 < · · · < n),

a function di : Xn → Xn−1 (the ith face map on n-simplices)
(n > 0 and 0 ≤ i ≤ n),

for each surjective map σi : [n+ 1] → [n] of totally ordered sets,

a function si : Xn → Xn+1 (the ith degeneracy map on
n-simplices) (n ≥ 0 and 0 ≤ i ≤ n),

such that these functions satisfy the simplicial identities:

didj = dj−1di for i < j

disj =


sj−1di, when i < j,

1, when i = j, j + 1,

sjdi−1, when i > j + 1

sisj = sj+1si when i ≤ j
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Nerve of a category

Nerve of a small category C is a simplicial set N (C).

N0(C) = 0-cells = Ob(C):
•A

N1(C) = 1-cells = Morphisms of C:

A1
f−→ A2

N2(C) = 2-cells = A pair of composable morphisms in C:

A3

A1 A2f1

f2◦f1 f2

i.e., generated from A1
f1−→ A2

f2−→ A3.
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N3(C) = 3-cells = A triplet of composable morphisms in C:

A3

A4

A1 A2

f3

f1

f2◦f1

f3◦f2◦f1

f2

f3◦f2

i.e., generated from A1
f1−→ A2

f2−→ A3
f3−→ A4.

and so on.
di : Nk(C) → Nk−1(C):

(A1 → · · · → Ai−1
fi−1−−−→ Ai

fi−→ Ai+1 → · · · → Ak)

(A1 → · · ·Ai−1
fi◦fi−1−−−−→ Ai+1 → · · ·Ak)

si : Nk(C) → Nk+1(C): To main

(A1 → · · · → Ai → · · · → Ak) 7→ (A1 → · · ·Ai
id−→ Ai → · · ·Ak).
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To main

Definition 1

A Picard groupoid P is a symmetric monoidal category such that all
morphisms are invertible and tensoring with any object X in P yields
an equivalence of categories

X ⊗ : P
∼−→ P.

Definition 2

A Picard 2-groupoid P is a symmetric monoidal 2-category such that
all morphisms are invertible up to 2-morphisms, all 2-morphisms are
invertible, and tensoring with any object X in P yields an equivalence
of 2-categories

X ⊗ : P ∼−→ P.

To main
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Example 3

The prototypical example of a determinant functor on an exact
category is the following. Suppose X is a scheme or manifold. Then
the rank of a vector bundle E over X is a locally constant function
rk E : X → Z, and we can define a determinant functor
det : vect(X) → PicZ(X) as follows:

det(E) =
(
rk E,∧rk E

OX
E
)

To main
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Associativity: Given a staircase commutative diagram

Cg

Θ : Cf Cgf

X Y Z
f g

the following diagram in P commutes:
det(Z)

det
(
Cgf

)
⊗ det(X) det (Cg)⊗ det(Y )

(
det (Cg)⊗ det

(
Cf

))
⊗ det(X) det (Cg)⊗ (det

(
Cf

)
⊗ det(X))

det(∆g) det(∆gf)

assP

det(∆̃)⊗1 1⊗det(∆f)
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Commutativity: Given two objects X and Y in C, there are

∆1 : X X ⊔ Y Y,

∆2 : Y X ⊔ Y X,

i1 p2

i2 p1

then the following diagram commutes:

det(X ⊔ Y )

det(Y )⊗ det(X) det(X)⊗ det(Y )

det(∆1)

commP

det(∆2)

To appendix To main
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f(det
(
Cf

)
)⊗ f(det(X)) f(det

(
Cf

)
⊗ det(X)) f(det(Y ))

det′
(
Cf

)
⊗ det′(X) det′(Y )

multf

α(Cf)⊗α(X)

f(det(∆))

α(Y )

det′(∆)
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Moreover, if there is another factorization

C V (C)

P

det

det′
f ′

α′

then there exists a unique tensor natural transformation β : f → f ′

such that

C V (C) C V (C)

=

P P

det

det′
f

α

det

det′
f ′

α′

fβ

To main
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Definition 15

A quadratic 2-module (ω, δ, ∂) is a diagram

C ⊗ C

L M N

wω

δ ∂

1 Commutators in L satisfy the following:

[l, l′] = −l − l′ + l + l′ = ω({δl} ⊗ {δl′}) for all l, l′ ∈ L.
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Remark

Homotopy groups πn(σ) of a quadratic 2-module σ = (ω, δ, ∂) are
defined as follows:

π1(σ) = coker(∂)

π2(σ) = ker(∂)/im(δ)

π3(σ) = ker(δ)

To main
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An Algebraic Model for Connected 2-type

A stable quadratic module σ is a commutative diagram of group
homomorphism

Nab ⊗Nab

M N

ω commutator

∂

such that

1 ω({∂m} ⊗ {∂m′}) = [m,m′] = −m−m′ +m+m′, for m,m′ ∈ M ,

2 ω({n} ⊗ {n′}+ {n′} ⊗ {n}) = 0, for n, n′ ∈ N .

Remark

The homotopy groups of σ are:

π0(σ) = coker ∂,

π1(σ) = ker ∂.

To main
Milind Gunjal July 1st, 2025 20 / 49



Suspension

Smash product

Let X,Y be two spaces. Then their smash product
X ∧ Y := X × Y/X ∨ Y .

Example 4

S1 ∧ S1 = S2, in fact Sn ∧ Sm = Sn+m for any n,m ∈ N.

Remark

ΣX ∼= S1 ∧X.

ΣkX ∼= Sk ∧X.

To main

Milind Gunjal July 1st, 2025 21 / 49



The face and degeneracy maps are defined as follows.

di(x) = (dvi x0, d
v
i−1x1, · · · , dv1xi−1, d

h
i xi+1, d

h
i xi+2, · · · , dhi xn),

si(x) = (svi x0, s
v
i−1x1, · · · , sv0xi, shi xi, shi xi+1, · · · , shi xn).

To main
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Remark

In a category of R-modules, we have

Hom(X ⊗A, Y ) ∼= Hom(X,Hom(A,Y)).

Similarly, in case of pointed topological spaces, smash product
plays the role of the tensor product. If A,X are compact
Hausdorff then we have

Hom(X ∧A, Y ) ∼= Hom(X,Hom(A,Y)).

So, in particular, for A = S1, we have

Hom(ΣX,Y ) ∼= Hom(X,Hom(S1, Y )) = Hom(X,ΩY ).

Here ΩY carries compact-open topology.

This implies, the suspension functor Ω ⊢ Σ, the loop space functor.
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Given a Waldhausen category C, S2C is also a Waldhausen
category. A morphism

A0 B0 B0/A0

A1 B1 B1/A1

is called a cofibration if the vertical maps are cofibrations and the
map from A1 ⊔A0 B0 → B1 is a cofibration.

A0 B0 B0/A0

A1 ⊔A0 B0

A1 B1 B1/A1

With a similar southern arrow condition, SnC is a Waldhausen
category for every n ∈ N. (See [GH99],[Zak14].)

Hence, one can consider S•(S•C) and keep on doing this. This will
give us a spectrum.

To main
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Definition 5

Let X and Y be two topological spaces, and let C(X,Y ) denote the set
of all continuous maps from X to Y . Given a compact subset K of X
and an open subset U of Y , let V (K,U) denote the set of all functions
f ∈ C(X,Y ) such that f(K) ⊆ U . Then the collection of all such
V (K,U) is a subbase for the compact-open topology on C(X,Y ).

So for each bonding map σn : ΣXn → Xn+1, there is a
corresponding map σ̃n : Xn → ΩXn+1.

When σ̃n is a weak equivalence for each n, X is called an
Ω-spectrum.

To main
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Detailed SQuad structure for a Waldhausen category6

The generators for dimension 0 are:
▶ [A] for any A ∈ Ob(C).

The generators for dimension 1 are:
▶ [A0

∼−→ A1] for any w.e.
▶ [A ↣ B ↠ B/A] for any cofiber sequence.

such that the following relations hold (i.e., we define ∂,w):
▶ ∂([A0

∼−→ A1]) = −[A1] + [A0].
▶ ∂([A ↣ B ↠ B/A]) = −[B] + [B/A] + [A].
▶ [0] = 0.

▶ [A
id−→ A] = 0.

▶ [A
id−→ A ↠ 0] = 0, [0 ↣ A

id−→ A] = 0.
▶ For any composable weak equivalences A

∼−→ B
∼−→ C,

[A
∼−→ C] = [B

∼−→ C] + [A
∼−→ B].

6Fernando Muro and Andrew Tonks. “The 1-type of a Waldhausen K-theory
spectrum”. In: Advances in Mathematics 216 (2007), pp. 179–183.
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▶ For any A,B ∈ Ob(C), define the w as follows:

w([A]⊗ [B]) := ⟨[A], [B]⟩

=

−[ B A
∐

B A
i2 p1

] + [ A A
∐

B B
i1 p2

].

Here,
A A

∐
B B

i1

p1 p2

i2

are natural inclusions and projections of a coproduct in C.
▶ For any commutative diagram in C as follows:

A0 B0 B0/A0

A1 B1 B1/A1

∼ ∼ ∼

we have

[A0
∼−→ A1] + [B0/A0

∼−→ B1/A1] + ⟨[A],−[B1/A1] + [B0/A0]⟩
=

−[A1 ↣ B1 ↠ B1/A1] + [B0
∼−→ B1] + [A0 ↣ B0 ↠ B0/A0].
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▶ For any commutative diagram consisting of cofiber sequences in C

as follows:
C/B

B/A C/A

A B C
we have,

[B ↣ C ↠ C/B] + [A ↣ B ↠ B/A]

=

[A↣ C ↠ C/A] + [B/A ↣ C/A ↠ C/B] + ⟨[A],−[C/A] + [C/B] + [B/A]⟩.
To main
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Definition 6

A (strict) 2-category C is comprised of the following:

0-Cells (Objects): Denoted by Ob(C).

1-Cells (Morphisms): For A,B ∈ Ob(C), a set Hom(A,B) of 1-cells
from A to B, also known as morphisms. A 1-cell is often written

textually as f : A → B or graphically as A
f−→ B.

2-Cells: For A,B ∈ Ob(C), f, g ∈ Hom(A,B), a set Face(f, g) of
2-cells from f to g. A 2-cell is often written textually as
α : f ⇒ g : A → B or graphically as follows:

A B

g

f

α

1-Composition: For each chain of 1-cells A
f−→ B

g−→ C, a 1-cell

A
f ;g−−→ C.
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Definition 6

Vertical 2-Composition: For a chain of 2-cells

A B

h

f

g

β

α

, a 2-cell A B.

h

f

α;β

Horizontal 2-Composition: For each chain of 2-cells

A B C

f ′

f

g′

g

α β , a 2-cell

A C.

f ′;g′

f ;g

α∗β
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Definition 6

Associativity: For all the compositions.

Identities of 1-cells and 2-cells exist and are compatible with all
the compositions.

2-Interchange: Every clover of 2-cells

A B Cg

h

f

β

g′

h′

f ′

β′

α α′

satisfies

(α;β) ∗ (α′;β′) = (α ∗ α′); (β ∗ β′).

To main
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Definition 7

Let C be a Waldhausen category and P be a Picard 2-groupoid. A
2-determinant functor Det : C → P consists of a functor, To apdx

Det : we(C) → P,

with additive data: for any ∆, a morphism

det(∆): det
(
Cf

)
⊗ det(X) → det(Y )

natural with respect to weak equivalences, and the following conditions
must be satisfied.
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Associativity: Given a staircase

Cg

Θf,g : Cf Cgf

X Y Z
f g

The following 2-morphism exists in P:
Det(Z)

Det
(
Cgf

)
⊗ Det(X) Det(Cg)⊗ Det(Y )

(Det(Cg)⊗ Det(Cf ))⊗ Det(X) Det(Cg)⊗ (Det(Cf )⊗ Det(X))

Det(∆g) Det(∆gf)

assP

Det(∆̃)⊗1 1⊗Det(∆f)
Det(Θf,g)

such that
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Given a staircase as follows:

Ch

Cg Chg

Cf Cgf Chgf

W X Y Z
f g h

We have the following cocycle condition:
Det (Θf,hg) · Det (Θg,h) = (Det (Θg,h)⊗ Det(W )) · Det (Θgf,h) ·

(
Det

(
Ch

)
⊗ Det (Θf,g)

)
.(1)
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Commutativity: Given two objects X and Y in C, the following
2-morphism exists in P:

Det(X ⊔ Y )

Det(X)⊗ Det(Y ) Det(Y )⊗ Det(X)

Det(∆2)

commP

Det(∆1)

ηX,Y

such that, given three objects X,Y, Z in C,

Z

ΘX,Y,Z : Y Y ⊔ Z

X X ⊔ Y X ⊔ Y ⊔ Z

Then the following holds.
(LHexP)Det(X)|Det(Y ),Det(Z) · (Det(Y )⊗ ηX,Z) · Det (ΘZ,X,Y ) · (ηX,Y ⊗ Det(Z))

=Det(ΘX,Z,Y ) · ηX,Y ∐
Z · Det (ΘZ,Y,X) .
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Definition 8

We define the 2-groupoid of virtual objects in the same way as we did
in definition ??.

To main

Milind Gunjal July 1st, 2025 36 / 49



Proposition 9

Let C be a Waldhausen category. The naturality of the monoidal
product in the Picard 2-groupoid of the virtual objects of C is tied to the
ω of the quadratic module associated to C.

Proof.

Let µf,g be the 2-morphism that exists due to the naturality of the
braiding as follows.

[Y ] + [X] [X] + [Y ]

[Y ′] + [X ′] [X ′] + [Y ′]

β[X],[Y ]

g+f f+g

β[X′],[Y ′]

µf,g

This translates to the following equation.

δ (µf,g) = −β[X′],[Y ′] − f − g[X] + β[X],[Y ] + f [Y ] + g.

.
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Proof.

This expands to give us the following diagram.

[Y ] + [X] [X] + [Y ]

[Y ] + [X ′] [X ′] + [Y ]

[Y ′] + [X ′] [X ′] + [Y ′]

β[X],[Y ]

f

g+f

f [Y ]

f+g
ω(f,g)

g[X
′]

g

id

β[X′],[Y ′]

µf,g

Here ω(f, g) = ω
(
{[f ]} ⊗

{[
g[X]

]})
.

This can also be viewed as the monoidal product +: C× C → C being
an oplax functor.
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Oplax functor

If F : C → D is a functor such that, for 1-cells f, g, we have
F (f ◦ g) ∼= F (f) ◦ F (g) (but not exactly equal). Then the functor F is
called as an oplax functor.

To main
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To Main H2(B,A) ∼= CentrExt(B,A)

φ

ψ

Proof.

For [c] ∈ H2(B,A): c : B ×B → A. Define a group E = U(G)× U(A)
with,

(b1, a1) · (b2, a2) = (b1 · b2, a1 + a2 + c(b1, b2)).

The map E
p−→ B is projection, and A

i−→ E is inclusion.
For the other direction, choose a section s : U(B) → U(E), define
c : B ×B → A as

c(b1, b2) = s(b1)s(b2)s(b1b2)
−1.

Applying p to c(b1, b2) gives us identity, hence c(b1, b2) ∈ ker(p), hence
by exactness, it belongs to A.
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To Main

Let G be a group, S be a right G-torsor and T be a left G-torsor,
then we define the contracted product of S and T by the G-torsor:

S ∧A T := S × T/[(sg, t) ∼ (s, gt)].

where G acts on [(s, t)] as

g · [(s, t)] = [(sg, t)].
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Definition 10

Let F be a free group and let f : F → N be a homomorphism. We say
that a nil(n)-module ∂ : M → N is a free nil(n)-module with basis f , if
a homomorphism i : F → M is given such that ∂ ◦ i = f and such that
the following universal property is satisfied. For each nil(n)-module
∂′ : M ′ → N ′ and for each commutative diagram of unbroken arrows

M M ′

F

N N ′

∂

m

∂′

mFi

f

n

there is a unique map (m,n) : ∂ → ∂′ in cross(n)—the category of
nil(n)-modules. A nil(n)-module ∂ : M → N is called totally free if ∂ is
free as above and N is a free group.
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Definition 11

Let ∂ : M → N be a nil(2)-module and let f : F → M be a
homomorphism where F is a free group and for which ∂ ◦ f = 0. We
say that a quadratic module (ω, δ, ∂) is a free quadratic module with
basis f if a homomorphism i : F → L is given such that δ ◦ i = f and
the following universal property is satisfied. Consider any commutative
diagram of broken arrows

L M N

F

L′ M ′ N ′

l

δ ∂

m n

i f

lF

δ′ ∂′

where (ω′, δ′, ∂′) is a quadratic module, where (m,n) : ∂ → ∂′ is a map
of nil(2)-modules, lF is a homomorphism, then there exists a unique
map (l,m, n) in the category of quadratic modules. We say (ω, δ, ∂) is
a totally free quadratic module if it is free and ∂ is a totally free
nil(2)-module.
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Construction—Free Nil(n)-module

A free(n)-module with basis f : ⟨Z⟩ → N can be constructed as follows.
Define a pre-crossed module ∂f : ⟨Z ×N⟩ → N where
∂f (x, α) = −α+ f(x) + α, and the action is defined as
(x, α)β = (x, α+ β). Then a free nil(n)-module can be constructed by
modding out by the (n+ 1)th Peiffer commutator.

rn(∂f ) : ⟨Z ×N⟩/Pn+1(∂f ) → N
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Construction—Free Quadratic Module

We can now construct a free quadratic module from a given
nil(2)-module ∂ : M → N and a basis f : F → L. Using universal
property of sum of nil(n)-modules, we have

0E 0E ∨ ∂ ∂

∂
f

(f,1)
1

J (CE ⊕ C)⊗2 C⊗2

c-push L

(E ∨M)2 M N

j

w

(f∗,1)⊗2

w

ω

δ

(f,1)◦j ∂

where C = (M cr)ab, CE is the free (π1∂)-module generated by Z ,
(E ∨M)2 = ker(0, 1), J = (CE ⊗CE)⊕ (CE ⊗C)⊕ (C ⊗CE), and w is
the Peiffer commutator. The pushout square is called central because
the vertical maps need to be central.
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Definition 12

A (p, q)-shuffle is a pair of strictly increasing functions

σ0 : {0, 1, · · · , q − 1} −→ {0, 1, · · · , p+ q − 1}

σ1 : {0, 1, · · · , p− 1} −→ {0, 1, · · · , p+ q − 1}

with disjoint images.

Each shuffle (σ0, σ1) has a sign, sg(σ), where σ is the permutation of
{0, · · · , p+ q − 1} as follows

σ(i) =

{
σ1(i) for i < p

σ0(i− p) for p ≤ i < p+ q
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Proposition 13

Let K,L be reduced simplicial sets. Let ρ(K), ρ(L) denote the associated
crossed complexes. There exists a crossed complex homomorphism

b : ρ(K)⊗ ρ(L) −→ ρ(K × L)

natural in K,L, defined for x ∈ Kp, y ∈ Lq by

b(x⊗ y) =


−(s0x, s1y) + (s1x, s0y) for (p, q) = (1, 1)∑
(σ0,σ1)∈Sp,q

sg(σ) · (sσ0x, sσ1y) for (p, q) ̸= (1, 1)
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Definition 14

An S•-category C• is a simplicial category such that

C0 = ∗, Cn has finite coproducts for all n ≥ 0,

Faces and degeneracies preserve the coproducts.

C• is endowed with a simplicial category we(C•) containing all
isomorphisms iso(C•) ⊆ we(C•), whose morphisms are called weak
equivalences.

▶ Finite coproducts of weak equivalences are weak equivalences.

Example 15

Given a Waldhausen category C, S•C is an S•-category.

Remark

For an S•-category C•, and a Picard 2-groupoid P, one can define
2-determinant functors Det : C• → P (see [MTW15]).

One can also define a quadratic module and the associated Picard
2-groupoid that models the 2-groupoid of virtual objects of C•.

To Main
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A biextension E → B ×B is anti-symmetric if the symmetric
biextension E ∧ σ∗E is trivial as a symmetric biextension,

▶ σ : B ×B → B ×B is the permutation map.

E is alternating if ∆∗E itself is split, in a manner compatible with
the canonical splitting of (∆∗E)2.

▶ ∆: B → B ×B is the diagonal

The monoidal structure on E is symmetric precisely when the
associated biextension given by the commutator map is alternating
and the underlying biextension admits a trivialization compatible
with the anti-symmetric structure.
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