Stabilization of 2-Crossed Modules

Milind Gunjal
In collaboration with Dr. Ettore Aldrovandi

Department of Mathematics
Florida State University

November $11^{\text {th }}, 2023$

Introduction

Space with interesting homotopy groups

- Examples of such gadgets.
- Category of finitely generated projective R-modules. If X is the output of its K-theory, then we have:
$\star \pi_{1}(X)=K_{0}(R)$.
$\star \pi_{2}(X)=K_{1}(R)=R^{\times}=$Units of R.
- A Waldhausen Category.
- Examples of such gadgets.
- Category of finitely generated projective R-modules. If X is the output of its K-theory, then we have:
$\star \pi_{1}(X)=K_{0}(R)$.
$\star \pi_{2}(X)=K_{1}(R)=R^{\times}=$Units of R.
- A Waldhausen Category.

Definition 1

A Waldhausen category ${ }^{a} \mathcal{C}$ is a category with a zero object, 0 equipped with two classes of morphisms: weak equivalences (WE) and cofibrations (CO) such that it has a notion of taking quotients, and satisfy certain conditions.

[^0]
Examples of Waldhausen categories

(1) The category R-Mod, for any ring R.

Injective maps (CO).
Isomorphisms (WE).
(2) An exact category.

Monomorphisms (CO).
Isomorphisms (WE).

Examples of Waldhausen categories

(1) The category R-Mod, for any ring R.

Injective maps (CO).
Isomorphisms (WE).
(2) An exact category.

Monomorphisms (CO).
Isomorphisms (WE).
(3) Category $\mathcal{R}(X)$ of spaces that retract to X.

Serre cofibrations (CO).
Maps that induce isomorphisms for chosen homology theory (WE).
(9) The category of finite sets.

Inclusions (CO).
Isomorphisms (WE).

Gadget \downarrow

K-theory

Space with interesting homotopy groups

$$
\underset{n \text {-types }}{\downarrow}
$$

n-types

Algebraic model of a 1-type
Groups can be considered as algebraic models for the 1-type.

- If a space X is such that,

$$
\pi_{i}(X)= \begin{cases}G & \text { for } i=1 \\ 0 & \text { for } i \neq 1\end{cases}
$$

- $B G:=|N(G \rightrightarrows *)|$.
- $X \simeq B G$.

Algebraic model of a 1-type
Groups can be considered as algebraic models for the 1-type.

- If a space X is such that,

$$
\pi_{i}(X)= \begin{cases}G & \text { for } i=1 \\ 0 & \text { for } i \neq 1\end{cases}
$$

- $B G:=|N(G \rightrightarrows *)|$.
- $X \simeq B G$.

n-types	Categorical model	Algebraic model
1-type	$\mathcal{G}=(G \rightrightarrows *)$	G

Theorem 2 (Homotopy Hypothesis (Grothendieck))

By taking classifying spaces and fundamental n-groupoids, there is an equivalence between the theory of weak n-goupoids and that of homotopy n-types.

n-types	Categorical model	Algebraic model	Groups
0-type	0 -category	Set	
1-type	1-category	Group	1 group
2-type	2-category	Crossed Module ${ }^{1}$	2 groups
3-type	3-category	2-Crossed Module	3 groups

[^1]
Definition 3

A 2-crossed module ${ }^{a} G_{*}$ consists of a complex of G_{0}-groups

$$
\begin{aligned}
& G_{1} \times G_{1} \\
& \{\cdot, \cdot\} \downarrow \\
& G_{2} \xrightarrow{\partial_{2}} G_{1} \xrightarrow{\partial_{1}} G_{0}
\end{aligned}
$$

- ∂ 's are G_{0}-equivariant.
- $G_{2} \xrightarrow{\partial_{2}} G_{1}$ is a crossed module.
∂_{2} is G_{1}-equivariant.
$f^{\partial_{2} g}=g^{-1} f g$ for all $f, g \in G_{2}$.

Definition 3

A 2-crossed module ${ }^{a} G_{*}$ consists of a complex of G_{0}-groups

$$
\begin{aligned}
& G_{1} \times G_{1} \\
& \{\cdot, \cdot\} \downarrow \\
& \quad G_{2} \xrightarrow{\partial_{2}} G_{1} \xrightarrow{\partial_{1}} G_{0}
\end{aligned}
$$

- ∂ 's are G_{0}-equivariant.
- $G_{2} \xrightarrow{\partial_{2}} G_{1}$ is a crossed module.
∂_{2} is G_{1}-equivariant.
$f^{\partial_{2} g}=g^{-1} f g$ for all $f, g \in G_{2}$.
- $\left(\alpha^{f}\right)^{x}=\left(\alpha^{x}\right)^{f^{x}}$ for all $\alpha \in G_{2}, f \in G_{1}, x \in G_{0}$.
- Compatibility conditions.
${ }^{a}$ Ronald Brown and İlhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: Applied Categorical Structures (2003), p. 193.

Remark

The homotopy groups of a 2 -crossed module G_{*} are:

- $\pi_{0}\left(G_{*}\right)=\operatorname{Coker}\left(\partial_{1}: G_{1} \rightarrow G_{0}\right)$,
- $\pi_{1}\left(G_{*}\right)=\operatorname{Ker}\left(\partial_{1}: G_{1} \rightarrow G_{0}\right) /\left(\operatorname{Im}\left(\partial_{2}: G_{2} \rightarrow G_{1}\right)\right)$,
- $\pi_{2}\left(G_{*}\right)=\operatorname{Ker}\left(\partial_{2}: G_{2} \rightarrow G_{1}\right)$.

Current work

- From a given Waldhausen category, it is known that we can get a group (1-type), and a stable crossed module (2-type) ${ }^{2}$.
- Now, we want to find a 3-type using the same procedure to get the 2-crossed module G_{*}.

[^2]- The generators for G_{0} are:
- $[A]$ for any $A \in O b(\mathcal{C})$.
- The generators for G_{1} are:
- $\left[A_{0} \xrightarrow{\sim} A_{1}\right]$ for any WE.
- $[A \mapsto B \rightarrow B / A]$ for any cofiber sequence.
- The generators for G_{0} are:
- $[A]$ for any $A \in O b(\mathcal{C})$.
- The generators for G_{1} are:
- $\left[A_{0} \xrightarrow{\sim} A_{1}\right]$ for any WE.
- $[A \hookrightarrow B \rightarrow B / A]$ for any cofiber sequence.
- The generators for G_{2} are:

- But this is not stable yet. So we make it stable by realizing the monoidal 2-Cat structure on it.

Stability

- The output of K-theory is in fact a spectrum \mathbb{X}, i.e., a sequence of pointed spaces $\left\{X_{n}\right\}_{n \geq 0}$ with the structure maps $\Sigma X_{n} \rightarrow X_{n+1}$.

Definition 4

For a space X, the suspension ΣX is the quotient of $X \times I$ obtained by collapsing $X \times\{0\}$ to one point and $X \times\{1\}$ to another point. $\left(\Sigma X=S^{1} \wedge X\right)$.

Example: $\Sigma S^{n}=S^{n+1}$

Theorem 5 (Freudenthal Suspension Theorem)

For a spectrum $\mathbb{X}=\left\{X_{n}\right\}_{n \geq 0}$, the sequence

$$
\pi_{i}\left(X_{n}\right) \rightarrow \pi_{i+1}\left(X_{n+1}\right) \rightarrow \pi_{i+2}\left(X_{n+2}\right) \rightarrow \cdots
$$

eventually stabilizes.

Theorem 5 (Freudenthal Suspension Theorem)

For a spectrum $\mathbb{X}=\left\{X_{n}\right\}_{n \geq 0}$, the sequence

$$
\pi_{i}\left(X_{n}\right) \rightarrow \pi_{i+1}\left(X_{n+1}\right) \rightarrow \pi_{i+2}\left(X_{n+2}\right) \rightarrow \cdots
$$

eventually stabilizes.

Stable Homotopy Group
The $i^{\text {th }}$ stable homotopy group of \mathbb{X} is:

$$
\pi_{i}^{s}(\mathbb{X})=\lim _{\vec{k}} \pi_{i+k}\left(X_{k}\right) \cong \pi_{i+N}\left(X_{N}\right), N \gg 0
$$

Theorem 6 (The Stable Homotopy Hypothesis)

${ }^{a}$ Symmetric monoidal structure corresponds to topological stability.

Stable 1-types \longleftrightarrow Symmetric Monoidal Categories \longleftrightarrow Stable Crossed Module

Stable 2-types \longleftrightarrow Symmetric Monoidal 2-Categories \longleftrightarrow Stable 2-Crossed Modules

[^3]
SM 2-Cat structure on a $2-\mathrm{CM}$

- Given a $2-\mathrm{CM} G_{*}$

$$
G_{2} \xrightarrow{\partial} G_{1} \xrightarrow{\partial} G_{0}
$$

- $\operatorname{Ob}\left(\Gamma\left(G_{*}\right)\right)=G_{0}$.

$$
x_{0} \in G_{0}
$$

- $1-\operatorname{Mor}\left(\Gamma\left(G_{*}\right)\right)=G_{0} \rtimes G_{1}$.

$$
x_{0} \xrightarrow{f_{0}} x_{1} \text { such that } x_{1}=x_{0} \cdot \partial\left(f_{0}\right)
$$

SM 2-Cat structure on a $2-\mathrm{CM}$

- Given a $2-\mathrm{CM} G_{*}$

$$
G_{2} \xrightarrow{\partial} G_{1} \xrightarrow{\partial} G_{0}
$$

- $\operatorname{Ob}\left(\Gamma\left(G_{*}\right)\right)=G_{0}$.

$$
x_{0} \in G_{0}
$$

- $1-\operatorname{Mor}\left(\Gamma\left(G_{*}\right)\right)=G_{0} \rtimes G_{1}$.

$$
x_{0} \xrightarrow{f_{0}} x_{1} \text { such that } x_{1}=x_{0} \cdot \partial\left(f_{0}\right)
$$

- $2-\operatorname{Mor}\left(\Gamma\left(G_{*}\right)\right)=G_{0} \rtimes G_{1} \rtimes G_{2}$.

Such that $f_{1}=f_{0} \cdot \partial(\alpha)$.

Figure 1: Vertical composition

Figure 1: Vertical composition

Figure 2: Horizontal composition
They satisfy certain compatibility conditions.

Figure 1: Vertical composition

Figure 2: Horizontal composition
They satisfy certain compatibility conditions.

Figure 3: Monoidal structure

Components of a Symmetric Monoidal 2-Category ${ }^{3}$ (SM 2-Cat) are:

- A 2-Cat.
- Monoidal structure (\otimes) on the 2 -Cat.

[^4] Press, 2021, pp. 384-396.

Components of a Symmetric Monoidal 2-Category ${ }^{3}$ (SM 2-Cat) are:

- A 2-Cat.
- Monoidal structure (\otimes) on the 2-Cat.
- Braiding (β) on the monoidal structure.
- Left ($\eta_{-\mid--}$) and right ($\eta_{--\mid-}$) hexagonators.
- Syllepsis (γ) (Exclusive for 2-Cat).
- Symmetry axiom.
- Pull back the symmetric structure to get a stable 2-CM.

[^5]
Thank You!

References I

[1] Charles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172-174.
[2] Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.
[3] Ronald Brown and İlhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: Applied Categorical Structures (2003), p. 193.
[4] Niles Johnson Nick Gurski and Angélica M. Osorno. "The 2-dimensional stable homotopy hypothesis". In: Journal of Pure and Applied Algebra, Volume 223, Issue 10, 2019 (2019), pp. 4348-4383.
[5] Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University Press, 2021, pp. 384-396.

References II

[6] H.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: Forum Mathematicum (1997), pp. 725-733.

Waldhausen category

A Waldhausen category ${ }^{a} \mathcal{C}$ is a category with a zero object, 0 equipped with two classes of morphisms: weak equivalences (WE) and cofibrations (CO) such that it has a notion of taking quotients, and satisfy certain conditions.

- iso(C) $\subseteq \mathrm{WE}(\mathcal{C}) \cap \mathrm{CO}(\mathrm{C})$.
- $0 \rightarrow X \in \mathrm{CO}(\mathcal{C})$ for all $X \in \mathrm{Ob}(\mathcal{C})$.
- If $A \hookrightarrow B$ is a cofibration and $A \rightarrow C$ is any morphism in \mathcal{C}, then the pushout $B \bigcup_{A} C$ of these two maps exists in \mathcal{C} and $C \longmapsto B \bigcup_{A} C$ is a cofibration.

[^6]
Waldhausen category

- Gluing axiom:

The induced map $B \bigcup_{A} C \rightarrow B^{\prime} \bigcup_{A^{\prime}} C^{\prime}$ is also a weak equivalence.

- Extension axiom:

If $A \rightarrow A^{\prime}$ and $B / A \rightarrow B^{\prime} / A^{\prime}$ are w.e. then so is $B \rightarrow B^{\prime}$.

Serre cofibrations

- In the category of topological spaces, a map $f: X \rightarrow Y$ is called a Serre fibration, if for each CW-complex A, the map f has the RLP w.r.t. the inclusion $A \times\{0\} \rightarrow A \times[0,1]$:

- A map f is called a Serre cofibration if it has the LLP w.r.t. acyclic fibrations.

Crossed Module

Definition 7

A crossed module ${ }^{a} G_{*}$ consists of a G_{0}-equivariant group homomorphism, where G_{0} acts on itself by conjugation.

$$
G_{1} \xrightarrow{\partial} G_{0}
$$

where the action of G_{0} on G_{1} satisfies

- $f^{\partial g}=g^{-1} f g$ for all $f, g \in G_{1}$.
${ }^{a}$ H.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: Forum Mathematicum (1997), pp. 725-733.

Crossed Module

Definition 7

A crossed module ${ }^{a} G_{*}$ consists of a G_{0}-equivariant group homomorphism, where G_{0} acts on itself by conjugation.

$$
G_{1} \xrightarrow{\partial} G_{0}
$$

where the action of G_{0} on G_{1} satisfies

- $f^{\partial g}=g^{-1} f g$ for all $f, g \in G_{1}$.
${ }^{a}$ H.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: Forum Mathematicum (1997), pp. 725-733.

Remark

The homotopy groups of the crossed module G_{*} are:

- $\pi_{0}\left(G_{*}\right)=$ Coker ∂,
- $\pi_{1}\left(G_{*}\right)=\operatorname{Ker} \partial$.

Extending the previous idea for higher values of n :

$$
\begin{equation*}
X \simeq|N \mathcal{G}| \tag{1}
\end{equation*}
$$

- $n=2$. For a given crossed module G_{*}, we can construct a category $\Gamma\left(G_{*}\right)$ such that
- $\operatorname{Ob}\left(\Gamma\left(G_{*}\right)\right)=G_{0}$
- 1-Mor $\left(\Gamma\left(G_{*}\right)\right)=G_{0} \rtimes G_{1}$
$\star G_{1}$ acts on G_{0} by sending $x_{0} \mapsto x_{0} \cdot \partial f$ for $f \in G_{1}$.
- For equation $1, \mathcal{G}=\left(\Gamma\left(G_{*}\right) \rightrightarrows *\right)$ works.

Stable Crossed Module

Definition 8

A stable crossed module $(\mathrm{SCM})^{a} G_{*}$ is a crossed module $\partial: G_{1} \rightarrow G_{0}$ together with a map

$$
\langle\cdot, \cdot\rangle: G_{0} \times G_{0} \rightarrow G_{1}
$$

satisfying the following for any $f, g \in G_{1}, x, y, z \in G_{0}$:
(1) $\partial\langle x, y\rangle=[y, x]$,
(2) $f^{x}=f+\langle x, \partial(f)\rangle$,
(3) $\langle x, y+z\rangle=\langle x, y\rangle^{z}+\langle x, z\rangle$,
(1) $\langle x, y\rangle+\langle y, x\rangle=0$.

[^7]
Some facts

- Examples of a model category which is not a Waldhausen category: Triangulated categories.
- The functor ${ }_{-} \otimes_{-}: \Gamma\left(G_{*}\right) \times \Gamma\left(G_{*}\right) \rightarrow \Gamma\left(G_{*}\right)$ is in fact an oplax functor.

Oplax functor

If $F: \mathcal{C} \rightarrow \mathcal{D}$ is a functor such that, for 1 -cells f, g, we have $F(f \circ g) \cong F(f) \circ F(g)$ (but not exactly equal). Then the functor F is called as an oplax functor.

Suspension

Smash product
 Let X, Y be two spaces. Then their smash product $X \wedge Y:=X \times Y / X \vee Y$.

Example 9
$S^{1} \wedge S^{1}=S^{2}$, in fact $S^{n} \wedge S^{m}=S^{n+m}$ for any $n, m \in \mathbb{N}$.
Remark

- $\Sigma X \cong S^{1} \wedge X$.
- $\Sigma^{k} X \cong S^{k} \wedge X$.

Remark

- In a category of R-modules, we have

$$
\operatorname{Hom}(X \otimes A, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(\mathrm{~A}, \mathrm{Y}))
$$

- Similarly, in case of pointed topological spaces, smash product plays the role of the tensor product. If A, X are compact Hausdorff then we have

$$
\operatorname{Hom}(X \wedge A, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(\mathrm{~A}, \mathrm{Y}))
$$

- So, in particular, for $A=S^{1}$, we have

$$
\operatorname{Hom}(\Sigma X, Y) \cong \operatorname{Hom}\left(X, \operatorname{Hom}\left(S^{1}, Y\right)\right)=\operatorname{Hom}(X, \Omega Y)
$$

- Here ΩY carries compact-open topology.
- This implies, the suspension functor $\Omega \vdash \Sigma$, the loop space functor.

Definition 10

Let X and Y be two topological spaces, and let $C(X, Y)$ denote the set of all continuous maps from X to Y. Given a compact subset K of X and an open subset U of Y, let $V(K, U)$ denote the set of all functions $f \in C(X, Y)$ such that $f(K) \subseteq U$. Then the collection of all such $V(K, U)$ is a subbase for the compact-open topology on $C(X, Y)$.

Definition 11

A stable quadratic module C_{*} is a commutative diagram of group homomorphisms

such that given $c_{i}, d_{i} \in C_{i}, i=0,1$,
(1) $w\left(\left\{\partial\left(c_{1}\right)\right\} \otimes\left\{\partial\left(d_{1}\right)\right\}\right)=\left[d_{1}, c_{1}\right]=d_{1}^{-1} c_{1}^{-1} d_{1} c_{1}$,
(2) $w\left(\left\{c_{0}\right\} \otimes\left\{d_{0}\right\}+\left\{d_{0}\right\} \otimes\left\{c_{0}\right\}\right)=0$. (The stability condition).

$$
\begin{aligned}
C_{0} & \rightarrow C_{0}^{a b} \\
x & \mapsto\{x\}
\end{aligned}
$$

Remark

The homotopy groups of C_{*} are:

- $\pi_{0}\left(C_{*}\right)=$ Coker ∂,
- $\pi_{1}\left(C_{*}\right)=\operatorname{Ker} \partial$.

Detailed SQuad structure for a Waldhausen category ${ }^{4}$

- The generators for dimension 0 are:
- $[A]$ for any $A \in O b(\mathcal{C})$.
- The generators for dimension 1 are:
- $\left[A_{0} \xrightarrow{\sim} A_{1}\right]$ for any w.e.
- $[A \rightarrow B \rightarrow B / A]$ for any cofiber sequence.
- such that the following relations hold (i.e., we define $\partial, w)$:
- $\partial\left(\left[A_{0} \xrightarrow{\sim} A_{1}\right]\right)=-\left[A_{1}\right]+\left[A_{0}\right]$.
- $\partial([A \hookrightarrow B \rightarrow B / A])=-[B]+[B / A]+[A]$.
- $[0]=0$.
- $[A \xrightarrow{i d} A]=0$.
- $[A \xrightarrow{i d} A \rightarrow 0]=0,[0 \hookrightarrow A \xrightarrow{i d} A]=0$.
- For any composable weak equivalences $A \xrightarrow{\sim} B \xrightarrow{\sim} C$,

$$
[A \xrightarrow{\sim} C]=[B \xrightarrow{\sim} C]+[A \xrightarrow{\sim} B] .
$$

[^8]- For any $A, B \in O b(\mathrm{C})$, define the w as follows:

$$
\begin{gathered}
w([A] \otimes[B]):=\langle[A],[B]\rangle \\
= \\
-\left[B \xrightarrow{i_{2}} A \amalg B \xrightarrow{p_{1}} A\right]+\left[A \xrightarrow{i_{1}} A \amalg B \xrightarrow{p_{2}} B\right] .
\end{gathered}
$$

Here,

$$
A \underset{p_{1}}{\stackrel{i_{1}}{\leftrightarrows}} A \amalg B \underset{p_{2}}{\stackrel{i_{2}}{\leftrightarrows}} B
$$

are natural inclusions and projections of a coproduct in \mathcal{C}.

- For any commutative diagram in \mathcal{C} as follows:

we have

$$
\begin{gathered}
{\left[A_{0} \xrightarrow{\sim} A_{1}\right]+\left[B_{0} / A_{0} \xrightarrow{\sim} B_{1} / A_{1}\right]+\left\langle[A],-\left[B_{1} / A_{1}\right]+\left[B_{0} / A_{0}\right]\right\rangle} \\
= \\
-\left[A_{1} \rightarrow B_{1} \rightarrow B_{1} / A_{1}\right]+\left[B_{0} \xrightarrow{\sim} B_{1}\right]+\left[A_{0} \rightarrow B_{0} \rightarrow B_{0} / A_{0}\right] .
\end{gathered}
$$

- For any commutative diagram consisting of cofiber sequences in \mathcal{C} as follows:

we have,

$$
\begin{gathered}
{[B \mapsto C \rightarrow C / B]+[A \mapsto B \rightarrow B / A]} \\
=
\end{gathered}
$$

$$
[\mathrm{A} \rightarrow C \rightarrow C / A]+[B / A \mapsto C / A \rightarrow C / B]+\langle[A],-[C / A]+[C / B]+[B / A]\rangle .
$$

Simplicial Set

A simplicial set $X \in \mathbf{s S e t}$ is

- for each $n \in \mathbb{N}$ a set $X_{n} \in \operatorname{Set}$ (the set of n-simplices),
- for each injective map $\partial_{i}:[n 1] \mathrm{B}[n]$ of totally ordered sets $([n]:=(0<1<\cdots<n)$,
- a function $d_{i}: X_{n} \rightarrow X_{n 1}$ (the $i^{\text {th }}$ face map on n-simplices) ($n>0$ and 0in),
- for each surjective map $\sigma_{i}:[n+1] \rightarrow[n]$ of totally ordered sets,
- a function $s_{i}: X_{n} \rightarrow X_{n+1}$ (the $i^{\text {th }}$ degeneracy map on n-simplices) ($n \geq 0$ and $0 \leq i \leq n$),
- such that these functions satisfy the simplicial identities:

$$
\begin{gathered}
d_{i} d_{j}=d_{j-1} d_{i} \text { for } i<j \\
d_{i} s_{j}= \begin{cases}s_{j-1} d_{i}, & \text { when } i<j, \\
1, & \text { when } i=j, j+1, \\
s_{j} d_{i-1}, & \text { when } i>j+1\end{cases} \\
s_{i} s_{j}=s_{j+1} s_{i} \text { when } i \leq j
\end{gathered}
$$

The face maps, and degeneracy maps for the Nerve of a category are as follows:

- $d_{i}: N_{k}(\mathcal{C}) \rightarrow N_{k-1}(\mathcal{C}):$

$$
\begin{gathered}
\left(A_{1} \rightarrow \cdots \rightarrow A_{i-1} \xrightarrow{f_{i-1}} A_{i} \xrightarrow{f_{i}} A_{i+1} \rightarrow \cdots \rightarrow A_{k}\right) \\
\downarrow \\
\left(A_{1} \rightarrow \cdots A_{i-1} \xrightarrow{\downarrow}{ }^{f_{i} \circ f_{i-1}} A_{i+1} \rightarrow \cdots A_{k}\right)
\end{gathered}
$$

- $s_{i}: N_{k}(\mathcal{C}) \rightarrow N_{k+1}(\mathcal{C})$:

$$
\left(A_{1} \rightarrow \cdots \rightarrow A_{i} \rightarrow \cdots \rightarrow A_{k}\right) \mapsto\left(A_{1} \rightarrow \cdots A_{i} \xrightarrow{\mathrm{id}} A_{i} \rightarrow \cdots A_{k}\right)
$$

2-Categories

Definition 12

A (strict) 2-category \mathcal{C} is comprised of the following:

- 0-Cells (Objects): Denoted by $\mathrm{Ob}(\mathrm{C})$.
- 1-Cells (Morphisms): For $A, B \in O b(\mathcal{C})$, a set $\operatorname{Hom}(A, B)$ of 1-cells from A to B, also known as morphisms. A 1-cell is often written textually as $f: A \rightarrow B$ or graphically as $A \xrightarrow{f} B$.
- 2-Cells: For $A, B \in O b(\mathcal{C}), f, g \in \operatorname{Hom}(A, B)$, a set Face (f, g) of 2-cells from f to g. A 2-cell is often written textually as $\alpha: f \Rightarrow g: A \rightarrow B$ or graphically as follows:

- 1-Composition: For each chain of 1-cells $A \xrightarrow{f} B \xrightarrow{g} C$, a 1-cell $A \xrightarrow{f ; g} C$.

Definition 12

- Vertical 2-Composition: For a chain of 2-cells

- Horizontal 2-Composition: For each chain of 2-cells

Definition 12

- Associativity: For all the compositions.
- Identities of 1-cells and 2-cells exist and are compatible with all the compositions.
- 2-Interchange: Every clover of 2-cells

[^0]: ${ }^{a}$ Charles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172-174.

[^1]: ${ }^{1}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^2]: ${ }^{2}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^3]: ${ }^{a}$ Niles Johnson Nick Gurski and Angélica M. Osorno. "The 2-dimensional stable homotopy hypothesis". In: Journal of Pure and Applied Algebra, Volume 223, Issue 10, 2019 (2019), pp. 4348-4383.

[^4]: ${ }^{3}$ Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University

[^5]: ${ }^{3}$ Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University Press, 2021, pp. 384-396.

[^6]: ${ }^{a}$ Charles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172-174.

[^7]: ${ }^{a}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^8]: ${ }^{4}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

