Stabilization of 2-Crossed Modules

Milind V. Gunjal

Department of Mathematics Florida State University

April $21^{st}, 2022$

Introduction

Milind V. Gunjal

April 21st, 2022 2/39

- Examples of such gadgets.
 - Category of finitely generated projective *R*-modules. (As discussed by Niles Johnson).
 If X is the output of K-theory on finitely generated projective *R*-modules, then we have

$$\star \ \pi_1(X) = K_0(R).$$

*
$$\pi_2(X) = K_1(R) = R^{\times} =$$
 Units of R .

► A Waldhausen Category.

Waldhausen category

A Waldhausen category^{*a*} C is a category with a zero object, 0 equipped with two classes of morphisms: weak equivalences (WE) and cofibrations (CO) such that it has a notion of taking quotients, and satisfy certain conditions.

^aCharles A. Weibel. *The K-book An Introduction to Algebraic K-theory*. American Mathematical Society, 2010, pp. 172–174.

Examples of Waldhausen categories

- The category of finite sets, with inclusions as cofibrations, and isomorphisms as weak equivalences.
- **2** The category **R-Mod**, for any ring R with the injective maps as the cofibrations, and isomorphisms as the weak equivalences.
- In fact, any exact category, hence any abelian category is naturally a Waldhausen category with monomorphisms as the cofibrations and isomorphisms as the weak equivalences.

Examples of Waldhausen categories

- The category of bounded below $(k \ge 0)$ chain complexes over a ring R, \mathbf{Ch}_R with $f: M \to N \in Hom_{Ch_R}(M, N)$ to be
 - a weak equivalence if f induces isomorphism on homology groups. a cofibration if for each $k \ge 0$ the map $f_k : M_k \to N_k$ is a monomorphism with a projective module as its cokernel.

n-Types

The resulting space of K-theory is very complicated to analyse. So, we break it down in *n*-types.

n-Types

n-type^{*a*} is the full subcategory of Top^{*}/ \simeq (i.e., pointed topological spaces up to homotopy equivalence) consisting of connected CW-spaces Y with $\pi_i(Y) = 0$ for i > n.

^aHans-Joachim Baues. "Combinatorial Homotopy and 4-Dimensional Complexes". In: *Walter de Gruyter* (1991), pp. 171–177.

Milind V. Gunjal

- From a given Waldhausen category, it is well know that we can get a 1-type and a 2-type.
- Now, for a given Waldhausen category, we want to find a 3-type.

Models for n-types

To analyse these n-types we study corresponding algebraic models, and we further relate them with n-Categories as follows:

Example of a 1-type

Groups can be considered as algebraic models for the 1-type. For a given space X such that,

$$\pi_i(X) = \begin{cases} G & \text{for } i = 1\\ 0 & \text{for } i \neq 1 \end{cases}$$

define the space $BG := |N(G \rightrightarrows *)|$ Then we get $X \simeq BG$.

Nerve of a category

Nerve of a small category \mathcal{C} is a simplicial complex $N_{\bullet}(\mathcal{C})$.

$$A_1 \xrightarrow{f} A_2$$

• $N_2(\mathcal{C}) = 2$ -cells = A pair of composable morphisms in \mathcal{C} :

i.e., generated from $A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3$.

• $N_k(\mathcal{C}) = k$ -cells = k-composable morphisms, i.e., generated from $A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{k-1}} A_k \xrightarrow{f_k} A_{k+1}$.

Example of a 1-type

Groups can be considered as algebraic models for the 1-type.

• For a given space X such that,

$$\pi_i(X) = \begin{cases} G & \text{for } i = 1\\ 0 & \text{for } i \neq 1 \end{cases}$$

define the space $BG := |N(G \rightrightarrows *)|$ Then we get $X \simeq BG$.

• So given a space X with π_1 as the only one non-trivial homotopy group, we can construct a category \mathcal{G} which can represent X up to homotopy equivalence.

$$X \simeq |N\mathcal{G}|$$

- We consider the group G as a corresponding algebraic model.
- And we consider the category \mathcal{G} as a corresponding categorical model.

Theorem 1 (Homotopy Hypothesis (Grothendieck))

By taking classifying spaces and fundamental n-groupoids, there is an equivalence between the theory of weak n-goupoids and that of homotopy n-types.

<i>n</i> -types	Categorical model	Algebraic model	Groups
0-type	0-category	Set	
1-type	1-category	Group	1 group
2-type	2-category	Crossed module	2 groups
3-type	3-category	2-Crossed module	$3 \mathrm{groups}$

Crossed Module

Crossed module

A crossed module^{*a*} G_* consists of a G_0 -equivariant group homomorphism, where G_0 acts on itself by conjugation.

$$G_1 \xrightarrow{\partial} G_0$$

where the action of G_0 on G_1 satisfies

•
$$f^{\partial g} = g^{-1} f g$$
.

^aH.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: *Forum Mathematicum* (1997), pp. 725–733.

Remark

The homotopy groups of the crossed module G_* are:

•
$$\pi_0(G_*) = \operatorname{Coker}\partial,$$

•
$$\pi_1(G_*) = \operatorname{Ker}\partial.$$

Extending the previous idea for higher values of n:

$$X \simeq |N\mathcal{G}| \tag{1}$$

- n = 2. For a given Crossed module G_* , we can construct a category $\Gamma(G_*)$ such that
 - Ob $(\Gamma(G_*)) = G_0$

• 1-Mor
$$(\Gamma(G_*)) = G_0 \rtimes G_1$$

★ G_1 acts on G_0 by sending $x_0 \mapsto x_0 \cdot \partial f$ for $f \in G_1$.

• For equation 1, $\mathcal{G} = (\Gamma(G_*) \rightrightarrows *)$ works.

2-Crossed Module

2-Crossed Module

A 2-crossed module^{*a*} G_* consists of a complex of G_0 -groups

$$\begin{array}{c} G_1 \times G_1 \\ \{\cdot, \cdot\} \\ G_2 \xrightarrow{\partial} & G_1 \xrightarrow{\partial} & G_0 \end{array}$$

(so that $\partial \partial = 0$) and ∂ 's are G_0 -equivariant, where G_0 acts on itself by conjugation, such that $G_2 \xrightarrow{\partial} G_1$ is a crossed module such that

- $(\alpha^f)^x = (\alpha^x)^{f^x}$ for all $\alpha \in G_2, f \in G_1, x \in G_0.$
- There is a function $\{\cdot, \cdot\} : G_1 \times G_1 \to G_2$ called Peiffer lifting.
- Compatibility conditions.

^aRonald Brown and Ilhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: *Applied Categorical Structures* (2003), p. 193.

2-Crossed Module

Remark

The homotopy groups of a 2-crossed module G_* are:

•
$$\pi_0(G_*) = \operatorname{Coker}(\partial: G_1 \to G_0),$$

• $\pi_1(G_*) = \operatorname{Ker}(\partial: G_1 \to G_0) / (\operatorname{Im}(\partial: G_2 \to G_1)),$

•
$$\pi_2(G_*) = \operatorname{Ker}(\partial: G_2 \to G_1).$$

Remark

- The groups defined above are well-defined.
- $\pi_1(G_*)$, $\pi_2(G_*)$ are abelian. (So, they could be seen as corresponding homotopy groups of a space).

Extending the previous idea for higher values of n:

$$X \simeq |N\mathcal{G}|$$

• n = 2. For a given Crossed module G_* , we can construct a category $\Gamma(G_*)$ such that

• Ob
$$(\Gamma(G_*)) = G_0$$

• 1-Mor
$$(\Gamma(G_*)) = G_0 \rtimes G_1$$

★ G_1 acts on G_0 by sending $x_0 \mapsto x_0 \cdot \partial f$ for $f \in G_1$.

- For equation 1, $\mathcal{G} = (\Gamma(G_*) \rightrightarrows *)$ works.
- n = 3. Now, for 2-Crossed modules, we extend this logic and construct a 2-Category structure, and later we try to stabilize it by putting a kind of commutative group law (i.e., a symmetric monoidal structure).

Stability

Milind V. Gunjal

April $21^{\rm st}, 2022$ 20 / 39

Stability

- We want to make the 2-Crossed modules stable.
- The output of K-theory is in fact a spectrum $\mathbb{X} = \{X_n\}_{n \ge 0}, \Sigma X_n \to X_{n+1}.$

Suspension

For a space X, the suspension ΣX is the quotient of $X \times I$ obtained by collapsing $X \times \{0\}$ to one point and $X \times \{1\}$ to another point. ($\Sigma X = S^1 \wedge X$).

Example: $\Sigma S^n = S^{n+1}$

Theorem 2 (Freudenthal Suspension Theorem)

For a spectrum $\mathbb{X} = \{X_n\}_{n \geq 0}$, the sequence

$$\pi_i(X_n) \to \pi_{i+1}(X_{n+1}) \to \pi_{i+2}(X_{n+2}) \to \cdots$$

eventually stabilizes.

Stable Homotopy Group

The i^{th} stable homotopy group of X is:

$$\pi_i^s(\mathbb{X}) = \lim_{\overrightarrow{k}} \pi_{i+k}(X_k) \cong \pi_{i+N}(X_N), \ N \gg 0$$

Theorem 3 (The Stable Homotopy Hypothesis)

Symmetric monoidal structure corresponds to topological stability.

SM 2-Cat structure on a 2-CM

• Given a 2-CM G_*

$$G_2 \xrightarrow{\partial} G_1 \xrightarrow{\partial} G_0$$

We can construct a 2-Cat $\Gamma(G_*)$:

• $Ob(\Gamma(G_*)) = G_0.$ $x_0 \in G_0.$

• 1-Mor(
$$\Gamma(G_*)$$
) = $G_0 \rtimes G_1$.
 $x_0 \xrightarrow{f_0} x_1$ such that $x_1 = x_0 \cdot \partial(f_0)$.

• 2-Mor
$$(\Gamma(G_*)) = G_0 \rtimes G_1 \rtimes G_2.$$

Such that $f_1 = f_0 \cdot \partial(\alpha)$.

Compositions of 2-cells:

Figure 1: Vertical composition

Figure 2: Horizontal composition

They satisfy certain compatibility conditions.

Milind V. Gunjal

Theorem 4 (Eckmann–Hilton argument)

If a set is equipped with two monoid structures with unit objects, such that each one is a homomorphism for the other, then the two structures coincide and the resulting monoid is commutative.

- A group G is abelian if and only if m : G × G → G is a homomorphism. Taking motivation from here, we can say:
- Defining a monoidal functor _ ⊗ _: Γ(G*) × Γ(G*) → Γ(G*) of 2-Categories, would give us stabilization, i.e., a symmetric monoidal structure.

Components of a Symmetric Monoidal 2-Category¹ (SM 2-Cat) are:

- A 2-Cat
- Monoidal structure (\otimes) on the 2-Cat
- Braiding (β) on the monoidal structure
- Left $(\eta_{-|--})$ and right $(\eta_{--|-})$ hexagonators
- Syllepsis (γ) (Exclusive for 2-Cat)

¹Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University Press, 2021, pp. 384–396.

Definition 5

A monoidal category is a category \mathcal{M} equipped with the following data:

- an object $1 \in Ob(\mathcal{M})$, called the unit object.
- **2** a functor: $_\otimes_:\mathcal{M}\times\mathcal{M}\to\mathcal{M}$ called the tensor product.
- ③ a natural isomorphism $\alpha_{x,y,z}$: (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z), called the associator.
- **()** a natural isomorphism $l_x : x \otimes 1 \xrightarrow{\cong} x$, called the left unitor.
- **③** a natural isomorphism $r_x : 1 \otimes x \xrightarrow{\cong} x$, called the right unitor such that the following diagrams commute:

• Pentagon identity

• Triangle identity

• Monoidal structure of 2-Crossed modules:

Figure 3: Monoidal structure

• This is a strict monoidal structure, which means associators $(\alpha_{x,y,z})$, and unitors (l_x, r_x) are identities, and hence the pentagon and triangle identities are also trivially satisfied.

• Braiding: For every $x_0 \xrightarrow{f} x_1$ and $y_0 \xrightarrow{g} y_1$, we have $x_0y_0 \xrightarrow{\beta_{x_0,y_0}} y_0x_0$ $f^{y_0g} \xrightarrow{\beta_{(x_0,f),(y_0,g)}} y_1x_1$

• Left $(\eta_{x|y,z})$ and right $(\eta_{x,y|z})$ hexagonators:

 β_{x_1,y_1}

Milind V. Gunjal

But since we have strict 2-category, we get:

All these satisfy naturality and certain compatibility conditions.

• Syllepsis

Given any two $x, y \in G_0$, we have

- For 1-Cat this 2-cell collapses to 1.
- They satisfy naturality and certain compatibility conditions and the following condition.
- Symmetry condition:

Milind V. Gunjal

- From a given Waldhausen category, it is well know that we can get a group, which is a 1-type, and a Stable Crossed module, which is a 2-type.
- Now, for a given Waldhausen category \mathcal{C} , we want to find a 3-type. So we are using the same procedure to get the 2-Crossed module G_* .

- The generators for G_0 are:
 - [A] for any $A \in Ob(\mathbb{C})$.
- The generators for G_1 are:
 - $[A_0 \xrightarrow{\sim} A_1]$ for any WE.
 - $[A \rightarrow B \rightarrow B/A]$ for any cofiber sequence.
- The generators for G_2 are:

• But this is not stable yet. So we make it stable by realizing the SM 2-Cat structure on it.

Milind V. Gunjal

References I

- Charles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172–174.
- Hans-Joachim Baues. "Combinatorial Homotopy and 4-Dimensional Complexes". In: Walter de Gruyter (1991), pp. 171–177.
- [3] H.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: Forum Mathematicum (1997), pp. 725–733.
- [4] Ronald Brown and İlhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: Applied Categorical Structures (2003), p. 193.
- [5] Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University Press, 2021, pp. 384–396.

 [6] Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179–183.

Thank You!

Waldhausen category

A Waldhausen category^{*a*} C is a category with a zero object, 0 equipped with two classes of morphisms: weak equivalences (WE) and cofibrations (CO) such that it has a notion of taking quotients, and satisfy certain conditions.

- $iso(\mathcal{C}) \subseteq WE(\mathcal{C}) \cap CO(\mathcal{C}).$
- $0 \to X \in CO(\mathcal{C})$ for all $X \in Ob(\mathcal{C})$.
- If $A \rightarrow B$ is a cofibration and $A \rightarrow C$ is any morphism in \mathcal{C} , then the pushout $B \bigcup_A C$ of these two maps exists in \mathcal{C} and $C \rightarrow B \bigcup_A C$ is a cofibration.

$$\begin{array}{c} A & \longrightarrow & B \\ \downarrow & & \downarrow \\ C & \longmapsto & B \bigcup_A C \end{array}$$

^aCharles A. Weibel. *The K-book An Introduction to Algebraic K-theory*. American Mathematical Society, 2010, pp. 172–174.

Waldhausen category

• Gluing axiom:

2-Categories

- A (strict) 2-category \mathcal{C} is comprised of the following:
 - 0-Cells (Objects): Denoted by $Ob(\mathcal{C})$.
 - 1-Cells (Morphisms): For A, B ∈ Ob(C), a set Hom(A, B) of 1-cells from A to B, also known as morphisms. A 1-cell is often written textually as f : A → B or graphically as A ^f→ B.
 - 2-Cells: For $A, B \in Ob(\mathbb{C}), f, g \in Hom(A, B)$, a set Face(f, g) of 2-cells from f to g. A 2-cell is often written textually as $\alpha : f \Rightarrow g : A \to B$ or graphically as follows:

• 1-Composition: For each chain of 1-cells $A \xrightarrow{f} B \xrightarrow{g} C$, a 1-cell $A \xrightarrow{f;g} C$.

• Vertical 2-Composition: For a chain of 2-cells

• Horizontal 2-Composition: For each chain of 2-cells

Milind V. Gunjal

- Associativity: For all the compositions.
- Identities of 1-cells and 2-cells exist and are compatible with all the compositions.
- 2-Interchange: Every clover of 2-cells

Stable Crossed Module

Definition 7

A stable crossed module (SCM)^{*a*} G_* is a crossed module $\partial: G_1 \to G_0$ together with a map

$$\langle \cdot, \cdot \rangle : G_0 \times G_0 \to G_1$$

satisfying the following for any $f, g \in G_1, x, y, z \in G_0$:

\$\overline{\lambda}(x,y) = [y,x]\$,
\$f^x = f + \langle x, \overline{\lambda}(f) \rangle\$,
\$\langle x, y + z \rangle = \langle x, y \rangle^z + \langle x, z \rangle\$,
\$\langle x, y \rangle + \langle y, x \rangle = 0\$.

^aFernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: *Advances in Mathematics 216* (2007), pp. 179–183.

Simplicial Set

A simplicial set $X \in \mathbf{sSet}$ is

- for each $n \in \mathbb{N}$ a set $X_n \in \mathbf{Set}$ (the set of *n*-simplices),
- for each injective map $\partial_i : [n-1] \to [n]$ of totally ordered sets $([n]: = (0 < 1 < \dots < n),$
- a function $d_i: X_n \to X_{n-1}$ (the *i*th face map on *n*-simplices) (n > 0 and $0 \le i \le n$),
- for each surjective map $\sigma_i: [n+1] \to [n]$ of totally ordered sets,
- a function $s_i : X_n \to X_{n+1}$ (the *i*th degeneracy map on *n*-simplices) $(n \ge 0 \text{ and } 0 \le i \le n)$,
- such that these functions satisfy the simplicial identities:

$$d_i d_j = d_{j-1} d_i$$
 for $i < j$

$$d_{i}s_{j} = \begin{cases} s_{j-1}d_{i}, & \text{when } i < j, \\ 1, & \text{when } i = j, j+1, \\ s_{j}d_{i-1}, & \text{when } i > j+1 \\ s_{i}s_{j} = s_{j+1}s_{i} \text{ when } i \leq j \end{cases}$$

The face maps, and degeneracy maps for the Nerve of a category are as follows:

•
$$d_i: N_k(\mathcal{C}) \to N_{k-1}(\mathcal{C}):$$

 $(A_1 \to \dots \to A_{i-1} \xrightarrow{f_{i-1}} A_i \xrightarrow{f_i} A_{i+1} \to \dots \to A_k)$
 \downarrow
 $(A_1 \to \dots \to A_{i-1} \xrightarrow{f_i \circ f_{i-1}} A_{i+1} \to \dots \to A_k)$
• $s_i: N_k(\mathcal{C}) \to N_{k+1}(\mathcal{C}):$
 $(A_1 \to \dots \to A_i \to \dots \to A_k) \mapsto (A_1 \to \dots \to A_i \xrightarrow{\text{id}} A_i \to \dots \to A_k).$

- Examples of a model category which is not a Waldhausen category: Triangulated categories.
- The functor $_-\otimes _-: \Gamma(G_*) \times \Gamma(G_*) \to \Gamma(G_*)$ is in fact an oplax functor.

Oplax functor

If $F : \mathcal{C} \to \mathcal{D}$ is a functor such that, for 1-cells f, g, we have $F(f \circ g) \cong F(f) \circ F(g)$ (but not exactly equal). Then the functor F is called as an oplax functor.

Suspension

Smash product

Let X, Y be two spaces. Then their smash product $X \wedge Y := X \times Y/X \vee Y$.

Example 8

$$S^1 \wedge S^1 = S^2$$
, in fact $S^n \wedge S^m = S^{n+m}$ for any $n, m \in \mathbb{N}$.

Remark

•
$$\Sigma X \cong S^1 \wedge X$$
.

•
$$\Sigma^k X \cong S^k \wedge X$$
.

Remark

 $\bullet\,$ In a category of $R\mbox{-modules},$ we have

 $\operatorname{Hom}(X \otimes A, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(A, Y)).$

• Similarly, in case of pointed topological spaces, smash product plays the role of the tensor product. If A, X are compact Hausdorff then we have

 $\operatorname{Hom}(X \wedge A, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(A, Y)).$

• So, in particular, for $A = S^1$, we have

 $\operatorname{Hom}(\Sigma X, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(S^1, Y)) = \operatorname{Hom}(X, \Omega Y).$

- Here ΩY carries compact-open topology.
- This implies, the suspension functor $\Sigma \vdash \Omega$, the loop space functor.

Let X and Y be two topological spaces, and let C(X, Y) denote the set of all continuous maps from X to Y. Given a compact subset K of X and an open subset U of Y, let V(K, U) denote the set of all functions $f \in C(X, Y)$ such that $f(K) \subseteq U$. Then the collection of all such V(K, U) is a subbase for the compact-open topology on C(X, Y).

Properties of 2-CM

Proposition

Given a SQuad $G_0^{ab} \otimes G_0^{ab} \xrightarrow{w} G_1 \xrightarrow{\partial} G_0$. Then the homomorphism w is central.

Proof.

$$\begin{split} & [a, w(\{y\} \otimes \{z\})] = w(\{\partial w(\{y\} \otimes \{z\})\} \otimes \{\partial(a)\}) \\ & = w(\{[z, y]\} \otimes \{\partial(a)\}) = w(0 \otimes \{\partial(a)\}) = 0. \end{split}$$

Similar result is also true for SCM.

Proposition

Given a 2-CM G_* , $\pi_2(G_*)$ is abelian.

Proof.

From the result above, and the definition of $\pi_2(G_*)$, $\pi_2(G_*)$ is central in G_2 , in particular it is abelian.

Milind V. Gunjal

April 21^{st} , 2022 14 / 20

Proposition

Given a 2-CM G_* , $\pi_1(G_*)$ is abelian.

Proof.

Im ∂ is normal in G_0 since:

$$\partial(f^x) = (\partial f)^x = x^{-1}(\partial f)x, f \in G_1, x \in G_0.$$

Similarly, $\pi_1(G_*)$ makes sense since $\operatorname{Im}(\partial: G_2 \to G_1)$ is normal in G_1 , hence in particular in $\operatorname{Ker}(\partial: G_1 \to G_0)$. Then, $f_0 \partial \alpha_0 \cdot f_1 \partial \alpha_1 = f_0 f_1 \partial (\alpha_0^{f_1} \alpha_1) = f_1 f_2 \partial (\langle f_0, f_1 \rangle \alpha_0^{f_1} \alpha_1)$ $= f_1 f_0 \partial (\alpha_1^{f_0} \alpha_0) \partial ((\alpha_1^{f_0} \alpha_0)^{-1} \langle f_0, f_1 \rangle \alpha_0^{f_1} \alpha_1)$ $= f_1 \partial \alpha_1 \cdot f_0 \partial \alpha_0 \cdot \partial ((\alpha_1^{f_0} \alpha_0)^{-1} \langle f_0, f_1 \rangle \alpha_0^{f_1} \alpha_1)$ Definition 10 A spectrum X is a sequence

$$\cdots \to X_2 \to X_1 \to X_0.$$

of pointed spaces $\{X_n\}_{n\geq 0}$ with the structure maps $\Sigma X_n \to X_{n+1}$.

A stable quadratic module C_* is a commutative diagram of group homomorphisms

Remark

The homotopy groups of C_* are:

• $\pi_0(C_*) = \operatorname{Coker}\partial,$

•
$$\pi_1(C_*) = \operatorname{Ker}\partial.$$

Milind V. Gunjal

Detailed SQuad structure for a Waldhausen category²

- The generators for dimension 0 are:
 - [A] for any $A \in Ob(\mathcal{C})$.
- The generators for dimension 1 are:
 - $[A_0 \xrightarrow{\sim} A_1]$ for any w.e.
 - $[A \rightarrow B \rightarrow B/A]$ for any cofiber sequence.

• such that the following relations hold (i.e., we define ∂, w):

$$[A \xrightarrow{\sim} C] = [B \xrightarrow{\sim} C] + [A \xrightarrow{\sim} B].$$

²Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: *Advances in Mathematics 216* (2007), pp. 179–183.

Milind V. Gunjal

April 21st, 2022 18 / 20

▶ For any $A, B \in Ob(\mathbb{C})$, define the *w* as follows:

$$w([A] \otimes [B]) := \langle [A], [B] \rangle$$

$$=$$

$$-[B \xrightarrow{i_{2}} A \coprod B \xrightarrow{p_{1}} A] + [A \xrightarrow{i_{1}} A \coprod B \xrightarrow{p_{2}} B].$$
Here,
$$A \xleftarrow[i_{p_{1}}]{} A \coprod B \xleftarrow[i_{2}]{} B$$
are natural inclusions and projections of a coproduct in C.
• For any commutative diagram in C as follows:
$$A_{2} \xrightarrow{p_{2}} B_{2} \xrightarrow{p_{2}} B_{2} / A_{2}$$

$$\begin{array}{cccc} A_0 & & & B_0 & \longrightarrow & B_0/A_0 \\ & & & & \downarrow \sim & & \downarrow \sim \\ A_1 & & & B_1 & \longrightarrow & B_1/A_1 \end{array}$$

we have

$$[A_0 \xrightarrow{\sim} A_1] + [B_0/A_0 \xrightarrow{\sim} B_1/A_1] + \langle [A], -[B_1/A_1] + [B_0/A_0] \rangle =$$

$$-[A_1 \rightarrowtail B_1 \twoheadrightarrow B_1/A_1] + [B_0 \xrightarrow{\sim} B_1] + [A_0 \rightarrowtail B_0 \twoheadrightarrow B_0/A_0].$$

▶ For any commutative diagram consisting of cofiber sequences in C as follows:

ain

we have,

$$\begin{array}{c}
C/B \\
\uparrow \\
B/A \longmapsto C/A \\
\uparrow \\
A \longmapsto B \longmapsto C
\end{array}$$

$$\begin{array}{c}
B \longmapsto C \twoheadrightarrow C/B \\
[B \longmapsto C \twoheadrightarrow C/B] + [A \longmapsto B \twoheadrightarrow B/A] \\
=
\end{array}$$

 $[\mathbf{A}\rightarrowtail C\twoheadrightarrow C/A]+[B/A\rightarrowtail C/A\twoheadrightarrow C/B]+\langle [A],-[C/A]+[C/B]+[B/A]\rangle.$