Stabilization of 2-Crossed Modules

Milind V. Gunjal

Department of Mathematics
Florida State University

$$
\text { April } 21^{\text {st }}, 2022
$$

Introduction

Gadget \downarrow

Space with interesting homotopy groups

- Examples of such gadgets.
- Category of finitely generated projective R-modules.
(As discussed by Niles Johnson).
If X is the output of K-theory on finitely generated projective R-modules, then we have
$\star \pi_{1}(X)=K_{0}(R)$.
$\star \pi_{2}(X)=K_{1}(R)=R^{\times}=$Units of R.
- A Waldhausen Category.

Waldhausen category

A Waldhausen category ${ }^{a} \mathcal{C}$ is a category with a zero object, 0 equipped with two classes of morphisms: weak equivalences (WE) and cofibrations (CO) such that it has a notion of taking quotients, and satisfy certain conditions.

[^0]
Examples of Waldhausen categories

(1) The category of finite sets, with inclusions as cofibrations, and isomorphisms as weak equivalences.
(2) The category \mathbf{R}-Mod, for any ring R with the injective maps as the cofibrations, and isomorphisms as the weak equivalences.
(3) In fact, any exact category, hence any abelian category is naturally a Waldhausen category with monomorphisms as the cofibrations and isomorphisms as the weak equivalences.

Examples of Waldhausen categories

- The category of bounded below $(k \geq 0)$ chain complexes over a $\operatorname{ring} R, \mathbf{C h}_{R}$ with $f: M \rightarrow N \in \operatorname{Hom}_{C h_{R}}(M, N)$ to be
a weak equivalence if f induces isomorphism on homology groups.
a cofibration if for each $k \geq 0$ the map $f_{k}: M_{k} \rightarrow N_{k}$ is a monomorphism with a projective module as its cokernel.

n-Types

The resulting space of K-theory is very complicated to analyse. So, we break it down in n-types.

n-Types

n-type ${ }^{a}$ is the full subcategory of Top* $/ \simeq$ (i.e., pointed topological spaces up to homotopy equivalence) consisting of connected CW-spaces Y with $\pi_{i}(Y)=0$ for $i>n$.

[^1]
Motivation

- From a given Waldhausen category, it is well know that we can get a 1-type and a 2-type.
- Now, for a given Waldhausen category, we want to find a 3-type.

Models for n-types

To analyse these n-types we study corresponding algebraic models, and we further relate them with n-Categories as follows:

Example of a 1-type
Groups can be considered as algebraic models for the 1-type. For a given space X such that,

$$
\pi_{i}(X)= \begin{cases}G & \text { for } i=1 \\ 0 & \text { for } i \neq 1\end{cases}
$$

define the space $B G:=|N(G \rightrightarrows *)|$
Then we get $X \simeq B G$.

Nerve of a category

Nerve of a small category \mathcal{C} is a simplicial complex $N_{\bullet}(\mathcal{C})$.

- $N_{0}(\mathrm{C})=0$-cells $=O b(\mathrm{C}):$

$$
\bullet A
$$

- $N_{1}(\mathrm{C})=1$-cells $=$ Morphisms of $\mathrm{C}:$

$$
A_{1} \xrightarrow{f} A_{2}
$$

- $N_{2}(\mathrm{C})=2$-cells $=\mathrm{A}$ pair of composable morphisms in C :

i.e., generated from $A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3}$.
- $N_{k}(\mathcal{C})=k$-cells $=k$-composable morphisms, i.e., generated from $A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{k-1}} A_{k} \xrightarrow{f_{k}} A_{k+1}$.

Example of a 1-type

Groups can be considered as algebraic models for the 1-type.

- For a given space X such that,

$$
\pi_{i}(X)= \begin{cases}G & \text { for } i=1 \\ 0 & \text { for } i \neq 1\end{cases}
$$

define the space $B G:=|N(G \rightrightarrows *)|$
Then we get $X \simeq B G$.

- So given a space X with π_{1} as the only one non-trivial homotopy group, we can construct a category \mathcal{G} which can represent X up to homotopy equivalence.

$$
X \simeq|N \mathcal{G}|
$$

- We consider the group G as a corresponding algebraic model.
- And we consider the category \mathcal{G} as a corresponding categorical model.

Theorem 1 (Homotopy Hypothesis (Grothendieck))

By taking classifying spaces and fundamental n-groupoids, there is an equivalence between the theory of weak n-goupoids and that of homotopy n-types.

n-types	Categorical model	Algebraic model	Groups
0 -type	0 -category	Set	
1-type	1-category	Group	1 group
2-type	2-category	Crossed module	2 groups
3-type	3-category	2-Crossed module	3 groups

Crossed Module

Crossed module

A crossed module ${ }^{a} G_{*}$ consists of a G_{0}-equivariant group homomorphism, where G_{0} acts on itself by conjugation.

$$
G_{1} \xrightarrow{\partial} G_{0}
$$

where the action of G_{0} on G_{1} satisfies

- $f^{\partial g}=g^{-1} f g$.
${ }^{a}$ H.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: Forum Mathematicum (1997), pp. 725-733.

Remark

The homotopy groups of the crossed module G_{*} are:

- $\pi_{0}\left(G_{*}\right)=$ Coker ∂,
- $\pi_{1}\left(G_{*}\right)=\operatorname{Ker} \partial$.

Extending the previous idea for higher values of n :

$$
\begin{equation*}
X \simeq|N \mathcal{G}| \tag{1}
\end{equation*}
$$

- $n=2$. For a given Crossed module G_{*}, we can construct a category $\Gamma\left(G_{*}\right)$ such that
- $\operatorname{Ob}\left(\Gamma\left(G_{*}\right)\right)=G_{0}$
- 1-Mor $\left(\Gamma\left(G_{*}\right)\right)=G_{0} \rtimes G_{1}$
$\star G_{1}$ acts on G_{0} by sending $x_{0} \mapsto x_{0} \cdot \partial f$ for $f \in G_{1}$.
- For equation $1, \mathcal{G}=\left(\Gamma\left(G_{*}\right) \rightrightarrows *\right)$ works.

2-Crossed Module

2-Crossed Module

A 2-crossed module ${ }^{a} G_{*}$ consists of a complex of G_{0}-groups

$$
\begin{aligned}
& G_{1} \times G_{1} \\
& \{\cdot, \cdot\} \downarrow \\
& \quad G_{2} \xrightarrow{\partial} G_{1} \xrightarrow{\partial} G_{0}
\end{aligned}
$$

(so that $\partial \partial=0$) and ∂ 's are G_{0}-equivariant, where G_{0} acts on itself by conjugation, such that $G_{2} \xrightarrow{\partial} G_{1}$ is a crossed module such that

- $\left(\alpha^{f}\right)^{x}=\left(\alpha^{x}\right)^{f^{x}}$ for all $\alpha \in G_{2}, f \in G_{1}, x \in G_{0}$.
- There is a function $\{\cdot, \cdot\}: G_{1} \times G_{1} \rightarrow G_{2}$ called Peiffer lifting.
- Compatibility conditions.
${ }^{a}$ Ronald Brown and İlhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: Applied Categorical Structures (2003), p. 193.

2-Crossed Module

Remark

The homotopy groups of a 2 -crossed module G_{*} are:

- $\pi_{0}\left(G_{*}\right)=\operatorname{Coker}\left(\partial: G_{1} \rightarrow G_{0}\right)$,
- $\pi_{1}\left(G_{*}\right)=\operatorname{Ker}\left(\partial: G_{1} \rightarrow G_{0}\right) /\left(\operatorname{Im}\left(\partial: G_{2} \rightarrow G_{1}\right)\right)$,
- $\pi_{2}\left(G_{*}\right)=\operatorname{Ker}\left(\partial: G_{2} \rightarrow G_{1}\right)$.

Remark

- The groups defined above are well-defined.
- $\pi_{1}\left(G_{*}\right), \pi_{2}\left(G_{*}\right)$ are abelian. (So, they could be seen as corresponding homotopy groups of a space).

Extending the previous idea for higher values of n :

$$
X \simeq|N \mathcal{G}|
$$

- $n=2$. For a given Crossed module G_{*}, we can construct a category $\Gamma\left(G_{*}\right)$ such that
- $\operatorname{Ob}\left(\Gamma\left(G_{*}\right)\right)=G_{0}$
- 1-Mor $\left(\Gamma\left(G_{*}\right)\right)=G_{0} \rtimes G_{1}$
$\star G_{1}$ acts on G_{0} by sending $x_{0} \mapsto x_{0} \cdot \partial f$ for $f \in G_{1}$.
- For equation $1, \mathcal{G}=\left(\Gamma\left(G_{*}\right) \rightrightarrows *\right)$ works.
- $n=3$. Now, for 2 -Crossed modules, we extend this logic and construct a 2-Category structure, and later we try to stabilize it by putting a kind of commutative group law (i.e., a symmetric monoidal structure).

Stability

Stability

- We want to make the 2-Crossed modules stable.
- The output of K-theory is in fact a spectrum $\mathbb{X}=\left\{X_{n}\right\}_{n \geq 0}$, $\Sigma X_{n} \rightarrow X_{n+1}$.

Suspension

For a space X, the suspension ΣX is the quotient of $X \times I$ obtained by collapsing $X \times\{0\}$ to one point and $X \times\{1\}$ to another point. $\left(\Sigma X=S^{1} \wedge X\right)$.

Example: $\Sigma S^{n}=S^{n+1}$

Theorem 2 (Freudenthal Suspension Theorem)

For a spectrum $\mathbb{X}=\left\{X_{n}\right\}_{n \geq 0}$, the sequence

$$
\pi_{i}\left(X_{n}\right) \rightarrow \pi_{i+1}\left(X_{n+1}\right) \rightarrow \pi_{i+2}\left(X_{n+2}\right) \rightarrow \cdots
$$

eventually stabilizes.

Stable Homotopy Group

The $i^{\text {th }}$ stable homotopy group of \mathbb{X} is:

$$
\pi_{i}^{s}(\mathbb{X})=\lim _{\vec{k}} \pi_{i+k}\left(X_{k}\right) \cong \pi_{i+N}\left(X_{N}\right), N \gg 0
$$

Theorem 3 (The Stable Homotopy Hypothesis)

Symmetric monoidal structure corresponds to topological stability.

Stable 1-types \longleftrightarrow Symmetric Monoidal Categories \longleftrightarrow Stable Crossed Module

Stable 2-types \longleftrightarrow Symmetric Monoidal 2-Categories \longleftrightarrow Stable 2-Crossed Modules

SM 2-Cat structure on a 2-CM

- Given a $2-\mathrm{CM} G_{*}$

$$
G_{2} \xrightarrow{\partial} G_{1} \xrightarrow{\partial} G_{0}
$$

We can construct a 2 -Cat $\Gamma\left(G_{*}\right)$:

- $\operatorname{Ob}\left(\Gamma\left(G_{*}\right)\right)=G_{0}$.

$$
x_{0} \in G_{0}
$$

- $1-\operatorname{Mor}\left(\Gamma\left(G_{*}\right)\right)=G_{0} \rtimes G_{1}$.

$$
x_{0} \xrightarrow{f_{0}} x_{1} \text { such that } x_{1}=x_{0} \cdot \partial\left(f_{0}\right) .
$$

- $2-\operatorname{Mor}\left(\Gamma\left(G_{*}\right)\right)=G_{0} \rtimes G_{1} \rtimes G_{2}$.

Such that $f_{1}=f_{0} \cdot \partial(\alpha)$.

Compositions of 2-cells:

Figure 1: Vertical composition

Figure 2: Horizontal composition

They satisfy certain compatibility conditions.

Theorem 4 (Eckmann-Hilton argument)

If a set is equipped with two monoid structures with unit objects, such that each one is a homomorphism for the other, then the two structures coincide and the resulting monoid is commutative.

- A group G is abelian if and only if $m: G \times G \rightarrow G$ is a homomorphism. Taking motivation from here, we can say:
- Defining a monoidal functor $\otimes_{-}: \Gamma\left(G_{*}\right) \times \Gamma\left(G_{*}\right) \rightarrow \Gamma\left(G_{*}\right)$ of 2-Categories, would give us stabilization, i.e., a symmetric monoidal structure.

Components of a Symmetric Monoidal 2-Category ${ }^{1}$ (SM 2-Cat) are:

- A 2-Cat
- Monoidal structure (\otimes) on the 2-Cat
- Braiding (β) on the monoidal structure
- Left ($\eta_{-\mid--}$) and right ($\eta_{--\mid-}$) hexagonators
- Syllepsis (γ) (Exclusive for 2-Cat)

[^2] Press, 2021, pp. 384-396.

Monoidal category

Definition 5

A monoidal category is a category \mathcal{M} equipped with the following data:
(1) an object $1 \in \mathrm{Ob}(\mathcal{M})$, called the unit object.
(2) a functor: ${ }_{-} \otimes_{-}: \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}$ called the tensor product.
(3) a natural isomorphism $\alpha_{x, y, z}:(x \otimes y) \otimes z \xrightarrow{\cong} x \otimes(y \otimes z)$, called the associator.
(9) a natural isomorphism $l_{x}: x \otimes 1 \stackrel{\cong}{\leftrightarrows} x$, called the left unitor.
© a natural isomorphism $r_{x}: 1 \otimes x \xrightarrow{\cong} x$, called the right unitor such that the following diagrams commute:

- Pentagon identity

$$
\begin{aligned}
& ((w \otimes x) \otimes y) \otimes z \\
& \alpha_{w, x, y} \otimes i d_{z} \downarrow \\
& w \otimes(x \otimes(y \otimes z)) \\
& \uparrow i d_{w} \otimes \alpha_{x, y, z} \\
& (w \otimes(x \otimes y)) \otimes z \longrightarrow w \otimes((x \otimes y) \otimes z)
\end{aligned}
$$

- Triangle identity

- Monoidal structure of 2-Crossed modules:

Figure 3: Monoidal structure

- This is a strict monoidal structure, which means associators $\left(\alpha_{x, y, z}\right)$, and unitors $\left(l_{x}, r_{x}\right)$ are identities, and hence the pentagon and triangle identities are also trivially satisfied.
- Braiding:

For every $x_{0} \xrightarrow{f} x_{1}$ and $y_{0} \xrightarrow{g} y_{1}$, we have

- Left $\left(\eta_{x \mid y, z}\right)$ and right $\left(\eta_{x, y \mid z}\right)$ hexagonators:

But since we have strict 2-category, we get:

All these satisfy naturality and certain compatibility conditions.

- Syllepsis

Given any two $x, y \in G_{0}$, we have

- For 1-Cat this 2-cell collapses to 1.
- They satisfy naturality and certain compatibility conditions and the following condition.
- Symmetry condition:

Current work

- From a given Waldhausen category, it is well know that we can get a group, which is a 1-type, and a Stable Crossed module, which is a 2 -type.
- Now, for a given Waldhausen category \mathcal{C}, we want to find a 3-type. So we are using the same procedure to get the 2-Crossed module G_{*}.
- The generators for G_{0} are:
- $[A]$ for any $A \in O b(\mathcal{C})$.
- The generators for G_{1} are:
- $\left[A_{0} \xrightarrow{\sim} A_{1}\right]$ for any WE.
- $[A \rightarrow B \rightarrow B / A]$ for any cofiber sequence.
- The generators for G_{2} are:

- But this is not stable yet. So we make it stable by realizing the SM 2-Cat structure on it.

References I

[1] Charles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172-174.
[2] Hans-Joachim Baues. "Combinatorial Homotopy and 4-Dimensional Complexes". In: Walter de Gruyter (1991), pp. 171-177.
[3] H.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: Forum Mathematicum (1997), pp. 725-733.
[4] Ronald Brown and İlhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: Applied Categorical Structures (2003), p. 193.
[5] Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University Press, 2021, pp. 384-396.

References II

[6] Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

Thank You!

Waldhausen category

A Waldhausen category ${ }^{a} \mathcal{C}$ is a category with a zero object, 0 equipped with two classes of morphisms: weak equivalences (WE) and cofibrations (CO) such that it has a notion of taking quotients, and satisfy certain conditions.

- iso(C) $\subseteq \mathrm{WE}(\mathcal{C}) \cap \mathrm{CO}(\mathrm{C})$.
- $0 \rightarrow X \in \mathrm{CO}(\mathcal{C})$ for all $X \in \mathrm{Ob}(\mathcal{C})$.
- If $A \hookrightarrow B$ is a cofibration and $A \rightarrow C$ is any morphism in \mathcal{C}, then the pushout $B \bigcup_{A} C$ of these two maps exists in \mathcal{C} and $C \longmapsto B \bigcup_{A} C$ is a cofibration.

[^3]Waldhausen category

- Gluing axiom:

The induced map $B \bigcup_{A} C \rightarrow B^{\prime} \bigcup_{A^{\prime}} C^{\prime}$ is also a weak equivalence.

2-Categories

Definition 6

A (strict) 2-category \mathcal{C} is comprised of the following:

- 0-Cells (Objects): Denoted by $\mathrm{Ob}(\mathrm{C})$.
- 1-Cells (Morphisms): For $A, B \in O b(\mathcal{C})$, a set $\operatorname{Hom}(A, B)$ of 1-cells from A to B, also known as morphisms. A 1-cell is often written textually as $f: A \rightarrow B$ or graphically as $A \xrightarrow{f} B$.
- 2-Cells: For $A, B \in O b(\mathcal{C}), f, g \in \operatorname{Hom}(A, B)$, a set Face (f, g) of 2-cells from f to g. A 2-cell is often written textually as $\alpha: f \Rightarrow g: A \rightarrow B$ or graphically as follows:

- 1-Composition: For each chain of 1-cells $A \xrightarrow{f} B \xrightarrow{g} C$, a 1-cell $A \xrightarrow{f ; g} C$.

Definition 6

- Vertical 2-Composition: For a chain of 2-cells

- Horizontal 2-Composition: For each chain of 2-cells

Definition 6

- Associativity: For all the compositions.
- Identities of 1-cells and 2-cells exist and are compatible with all the compositions.
- 2-Interchange: Every clover of 2-cells

Stable Crossed Module

Definition 7

A stable crossed module $(\mathrm{SCM})^{a} G_{*}$ is a crossed module $\partial: G_{1} \rightarrow G_{0}$ together with a map

$$
\langle\cdot, \cdot\rangle: G_{0} \times G_{0} \rightarrow G_{1}
$$

satisfying the following for any $f, g \in G_{1}, x, y, z \in G_{0}$:
(1) $\partial\langle x, y\rangle=[y, x]$,
(2) $f^{x}=f+\langle x, \partial(f)\rangle$,
(3) $\langle x, y+z\rangle=\langle x, y\rangle^{z}+\langle x, z\rangle$,
(1) $\langle x, y\rangle+\langle y, x\rangle=0$.

[^4]
Simplicial Set

A simplicial set $X \in \mathbf{s S e t}$ is

- for each $n \in \mathbb{N}$ a set $X_{n} \in \operatorname{Set}$ (the set of n-simplices),
- for each injective map $\partial_{i}:[n-1] \rightarrow[n]$ of totally ordered sets $([n]:=(0<1<\cdots<n)$,
- a function $d_{i}: X_{n} \rightarrow X_{n-1}$ (the $i^{\text {th }}$ face map on n-simplices) $(n>0$ and $0 \leq i \leq n)$,
- for each surjective map $\sigma_{i}:[n+1] \rightarrow[n]$ of totally ordered sets,
- a function $s_{i}: X_{n} \rightarrow X_{n+1}$ (the $i^{\text {th }}$ degeneracy map on n-simplices) ($n \geq 0$ and $0 \leq i \leq n$),
- such that these functions satisfy the simplicial identities:

$$
\begin{gathered}
d_{i} d_{j}=d_{j-1} d_{i} \text { for } i<j \\
d_{i} s_{j}= \begin{cases}s_{j-1} d_{i}, & \text { when } i<j, \\
1, & \text { when } i=j, j+1, \\
s_{j} d_{i-1}, & \text { when } i>j+1\end{cases} \\
s_{i} s_{j}=s_{j+1} s_{i} \text { when } i \leq j
\end{gathered}
$$

The face maps, and degeneracy maps for the Nerve of a category are as follows:

- $d_{i}: N_{k}(\mathcal{C}) \rightarrow N_{k-1}(\mathcal{C}):$

$$
\begin{gathered}
\left(A_{1} \rightarrow \cdots \rightarrow A_{i-1} \xrightarrow{f_{i-1}} A_{i} \xrightarrow{f_{i}} A_{i+1} \rightarrow \cdots \rightarrow A_{k}\right) \\
\downarrow \\
\left(A_{1} \rightarrow \cdots A_{i-1} \xrightarrow{\downarrow}{ }^{f_{i} \circ f_{i-1}} A_{i+1} \rightarrow \cdots A_{k}\right)
\end{gathered}
$$

- $s_{i}: N_{k}(\mathcal{C}) \rightarrow N_{k+1}(\mathcal{C})$:

$$
\left(A_{1} \rightarrow \cdots \rightarrow A_{i} \rightarrow \cdots \rightarrow A_{k}\right) \mapsto\left(A_{1} \rightarrow \cdots A_{i} \xrightarrow{\mathrm{id}} A_{i} \rightarrow \cdots A_{k}\right)
$$

Some facts

- Examples of a model category which is not a Waldhausen category: Triangulated categories.
- The functor ${ }_{-} \otimes_{-}: \Gamma\left(G_{*}\right) \times \Gamma\left(G_{*}\right) \rightarrow \Gamma\left(G_{*}\right)$ is in fact an oplax functor.

Oplax functor

If $F: \mathcal{C} \rightarrow \mathcal{D}$ is a functor such that, for 1 -cells f, g, we have $F(f \circ g) \cong F(f) \circ F(g)$ (but not exactly equal). Then the functor F is called as an oplax functor.

Suspension

```
Smash product
Let X,Y be two spaces. Then their smash product
X\wedgeY:= X × Y/X\veeY.
```

Example 8
$S^{1} \wedge S^{1}=S^{2}$, in fact $S^{n} \wedge S^{m}=S^{n+m}$ for any $n, m \in \mathbb{N}$.

Remark

- $\Sigma X \cong S^{1} \wedge X$.
- $\Sigma^{k} X \cong S^{k} \wedge X$.

Remark

- In a category of R-modules, we have

$$
\operatorname{Hom}(X \otimes A, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(\mathrm{~A}, \mathrm{Y}))
$$

- Similarly, in case of pointed topological spaces, smash product plays the role of the tensor product. If A, X are compact Hausdorff then we have

$$
\operatorname{Hom}(X \wedge A, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(\mathrm{~A}, \mathrm{Y}))
$$

- So, in particular, for $A=S^{1}$, we have

$$
\operatorname{Hom}(\Sigma X, Y) \cong \operatorname{Hom}\left(X, \operatorname{Hom}\left(S^{1}, Y\right)\right)=\operatorname{Hom}(X, \Omega Y)
$$

- Here ΩY carries compact-open topology.
- This implies, the suspension functor $\Sigma \vdash \Omega$, the loop space functor.

Definition 9

Let X and Y be two topological spaces, and let $C(X, Y)$ denote the set of all continuous maps from X to Y. Given a compact subset K of X and an open subset U of Y, let $V(K, U)$ denote the set of all functions $f \in C(X, Y)$ such that $f(K) \subseteq U$. Then the collection of all such $V(K, U)$ is a subbase for the compact-open topology on $C(X, Y)$.

Properties of 2-CM

Proposition

Given a SQuad $G_{0}^{a b} \otimes G_{0}^{a b} \xrightarrow{w} G_{1} \xrightarrow{\partial} G_{0}$. Then the homomorphism w is central.

Proof.
$[a, w(\{y\} \otimes\{z\})]=w(\{\partial w(\{y\} \otimes\{z\})\} \otimes\{\partial(a)\})$
$=w(\{[z, y]\} \otimes\{\partial(a)\})=w(0 \otimes\{\partial(a)\})=0$.
Similar result is also true for SCM.

Proposition

Given a 2 -CM $G_{*}, \pi_{2}\left(G_{*}\right)$ is abelian.

Proof.

From the result above, and the definition of $\pi_{2}\left(G_{*}\right), \pi_{2}\left(G_{*}\right)$ is central in G_{2}, in particular it is abelian.

Proposition

Given a 2 -CM $G_{*}, \pi_{1}\left(G_{*}\right)$ is abelian.

Proof.

$\operatorname{Im} \partial$ is normal in G_{0} since:

$$
\partial\left(f^{x}\right)=(\partial f)^{x}=x^{-1}(\partial f) x, f \in G_{1}, x \in G_{0} .
$$

Similarly, $\pi_{1}\left(G_{*}\right)$ makes sense since $\operatorname{Im}\left(\partial: G_{2} \rightarrow G_{1}\right)$ is normal in G_{1}, hence in particular in $\operatorname{Ker}\left(\partial: G_{1} \rightarrow G_{0}\right)$. Then,
$f_{0} \partial \alpha_{0} \cdot f_{1} \partial \alpha_{1}=f_{0} f_{1} \partial\left(\alpha_{0}^{f_{1}} \alpha_{1}\right)=f_{1} f_{2} \partial\left(\left\langle f_{0}, f_{1}\right\rangle \alpha_{0}^{f_{1}} \alpha_{1}\right)$
$=f_{1} f_{0} \partial\left(\alpha_{1}^{f_{0}} \alpha_{0}\right) \partial\left(\left(\alpha_{1}^{f_{0}} \alpha_{0}\right)^{-1}\left\langle f_{0}, f_{1}\right\rangle \alpha_{0}^{f_{1}} \alpha_{1}\right)$
$=f_{1} \partial \alpha_{1} \cdot f_{0} \partial \alpha_{0} \cdot \partial\left(\left(\alpha_{1}^{f_{0}} \alpha_{0}\right)^{-1}\left\langle f_{0}, f_{1}\right\rangle \alpha_{0}^{f_{1}} \alpha_{1}\right)$

Spectrum

Definition 10

A spectrum \mathbb{X} is a sequence

$$
\cdots \rightarrow X_{2} \rightarrow X_{1} \rightarrow X_{0}
$$

of pointed spaces $\left\{X_{n}\right\}_{n \geq 0}$ with the structure maps $\Sigma X_{n} \rightarrow X_{n+1}$.

Definition 11
A stable quadratic module C_{*} is a commutative diagram of group homomorphisms

such that given $c_{i}, d_{i} \in C_{i}, i=0,1$,
(1) $w\left(\left\{\partial\left(c_{1}\right)\right\} \otimes\left\{\partial\left(d_{1}\right)\right\}\right)=\left[d_{1}, c_{1}\right]=d_{1}^{-1} c_{1}^{-1} d_{1} c_{1}$,
(2) $w\left(\left\{c_{0}\right\} \otimes\left\{d_{0}\right\}+\left\{d_{0}\right\} \otimes\left\{c_{0}\right\}\right)=0$. (The stability condition).

$$
\begin{aligned}
C_{0} & \rightarrow C_{0}^{a b} \\
x & \mapsto\{x\}
\end{aligned}
$$

Remark

The homotopy groups of C_{*} are:

- $\pi_{0}\left(C_{*}\right)=$ Coker ∂,
- $\pi_{1}\left(C_{*}\right)=$ Kerə.

Detailed SQuad structure for a Waldhausen category ${ }^{2}$

- The generators for dimension 0 are:
- $[A]$ for any $A \in O b(\mathcal{C})$.
- The generators for dimension 1 are:
- $\left[A_{0} \xrightarrow{\sim} A_{1}\right]$ for any w.e.
- $[A \rightarrow B \rightarrow B / A]$ for any cofiber sequence.
- such that the following relations hold (i.e., we define $\partial, w)$:
- $\partial\left(\left[A_{0} \xrightarrow{\sim} A_{1}\right]\right)=-\left[A_{1}\right]+\left[A_{0}\right]$.
- $\partial([A \hookrightarrow B \rightarrow B / A])=-[B]+[B / A]+[A]$.
- $[0]=0$.
- $[A \xrightarrow{i d} A]=0$.
- $[A \xrightarrow{i d} A \rightarrow 0]=0,[0 \hookrightarrow A \xrightarrow{i d} A]=0$.
- For any composable weak equivalences $A \xrightarrow{\sim} B \xrightarrow{\sim} C$,

$$
[A \xrightarrow{\sim} C]=[B \xrightarrow{\sim} C]+[A \xrightarrow{\sim} B] .
$$

[^5]- For any $A, B \in O b(\mathrm{C})$, define the w as follows:

$$
\begin{gathered}
w([A] \otimes[B]):=\langle[A],[B]\rangle \\
= \\
-\left[B \xrightarrow{i_{2}} A \amalg B \xrightarrow{p_{1}} A\right]+\left[A \xrightarrow{i_{1}} A \amalg B \xrightarrow{p_{2}} B\right] .
\end{gathered}
$$

Here,

$$
A \underset{p_{1}}{\stackrel{i_{1}}{\leftrightarrows}} A \amalg B \underset{p_{2}}{\stackrel{i_{2}}{\leftrightarrows}} B
$$

are natural inclusions and projections of a coproduct in \mathcal{C}.

- For any commutative diagram in \mathcal{C} as follows:

we have

$$
\begin{array}{r}
{\left[A_{0} \xrightarrow{\sim} A_{1}\right]+\left[B_{0} / A_{0} \xrightarrow{\sim} B_{1} / A_{1}\right]+\left\langle[A],-\left[B_{1} / A_{1}\right]+\left[B_{0} / A_{0}\right]\right\rangle} \\
= \\
-\left[A_{1} \rightarrow B_{1} \rightarrow B_{1} / A_{1}\right]+\left[B_{0} \xrightarrow{\sim} B_{1}\right]+\left[A_{0} \rightarrow B_{0} \rightarrow B_{0} / A_{0}\right] .
\end{array}
$$

- For any commutative diagram consisting of cofiber sequences in \mathcal{C} as follows:

we have,

$$
[B \mapsto C \rightarrow C / B]+[A \mapsto B \rightarrow B / A]
$$

$$
[\mathrm{A} \rightarrow C \rightarrow C / A]+[B / A \mapsto C / A \rightarrow C / B]+\langle[A],-[C / A]+[C / B]+[B / A]\rangle .
$$

[^0]: ${ }^{a}$ Charles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172-174.

[^1]: ${ }^{a}$ Hans-Joachim Baues. "Combinatorial Homotopy and 4-Dimensional Complexes". In: Walter de Gruyter (1991), pp. 171-177.

[^2]: ${ }^{1}$ Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University

[^3]: ${ }^{a}$ Charles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172-174.

[^4]: ${ }^{a}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^5]: ${ }^{2}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

