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Introduction

Gadget

Space with interesting homotopy groups
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Examples of such gadgets.
▶ Category of finitely generated projective R-modules.

(As discussed by Niles Johnson).
If X is the output of K-theory on finitely generated projective
R-modules, then we have

⋆ π1(X) = K0(R).
⋆ π2(X) = K1(R) = R× = Units of R.

▶ A Waldhausen Category.
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Waldhausen category

A Waldhausen categorya C is a category with a zero object, 0 equipped
with two classes of morphisms: weak equivalences (WE) and
cofibrations (CO) such that it has a notion of taking quotients, and
satisfy certain conditions.

aCharles A. Weibel. The K-book An Introduction to Algebraic K-theory.
American Mathematical Society, 2010, pp. 172–174.
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Examples of Waldhausen categories
1 The category of finite sets, with inclusions as cofibrations, and

isomorphisms as weak equivalences.

2 The category R-Mod, for any ring R with the injective maps as
the cofibrations, and isomorphisms as the weak equivalences.

3 In fact, any exact category, hence any abelian category is naturally
a Waldhausen category with monomorphisms as the cofibrations
and isomorphisms as the weak equivalences.
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Examples of Waldhausen categories

The category of bounded below (k ≥ 0) chain complexes over a
ring R, ChR with f : M → N ∈ HomChR

(M,N) to be
▶ a weak equivalence if f induces isomorphism on homology groups.
▶ a cofibration if for each k ≥ 0 the map fk : Mk → Nk is a

monomorphism with a projective module as its cokernel.
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n-Types

The resulting space of K-theory is very complicated to analyse. So, we
break it down in n-types. ...

P2X

. . . P1X

X ∗

j3

j2

j1

i0

i1

i2

n-Types

n-typea is the full subcategory of Top∗/ ≃ (i.e., pointed topological
spaces up to homotopy equivalence) consisting of connected CW-spaces
Y with πi(Y ) = 0 for i > n.

aHans-Joachim Baues. “Combinatorial Homotopy and 4-Dimensional
Complexes”. In: Walter de Gruyter (1991), pp. 171–177.
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Motivation

From a given Waldhausen category, it is well know that we can get
a 1-type and a 2-type.

Now, for a given Waldhausen category, we want to find a 3-type.
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Models for n-types
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To analyse these n-types we study corresponding algebraic models, and
we further relate them with n-Categories as follows:

Example of a 1-type

Groups can be considered as algebraic models for the 1-type.
For a given space X such that,

πi(X) =

{
G for i = 1
0 for i ̸= 1

define the space BG := |N(G ⇒ ∗)|
Then we get X ≃ BG.
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Nerve of a category
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Nerve of a small category C is a simplicial complex N•(C). Back to
main

N0(C) = 0-cells = Ob(C):
•A

N1(C) = 1-cells = Morphisms of C:

A1
f−→ A2

N2(C) = 2-cells = A pair of composable morphisms in C:

A3

A1 A2f1

f2◦f1 f2

i.e., generated from A1
f1−→ A2

f2−→ A3.

Nk(C) = k-cells = k-composable morphisms, i.e., generated from

A1
f1−→ A2

f2−→ · · ·
fk−1−−−→ Ak

fk−→ Ak+1.
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Example of a 1-type

Groups can be considered as algebraic models for the 1-type.

For a given space X such that,

πi(X) =

{
G for i = 1
0 for i ̸= 1

define the space BG := |N(G ⇒ ∗)|
Then we get X ≃ BG.

So given a space X with π1 as the only one non-trivial homotopy
group, we can construct a category G which can represent X up to
homotopy equivalence.

X ≃ |NG|

We consider the group G as a corresponding algebraic model.

And we consider the category G as a corresponding categorical
model.
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Theorem 1 (Homotopy Hypothesis (Grothendieck))

By taking classifying spaces and fundamental n-groupoids, there is an
equivalence between the theory of weak n-goupoids and that of
homotopy n-types.

n-types Categorical model Algebraic model Groups

0-type 0-category Set

1-type 1-category Group 1 group

2-type 2-category Crossed module 2 groups

3-type 3-category 2-Crossed module 3 groups
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Crossed Module

Crossed module

A crossed modulea G∗ consists of a G0-equivariant group
homomorphism, where G0 acts on itself by conjugation.

G1 G0
∂

where the action of G0 on G1 satisfies

f∂g = g−1fg.

aH.-J. Baues and Daniel Conduché. “On the 2-type of an iterated loop
space”. In: Forum Mathematicum (1997), pp. 725–733.

Remark

The homotopy groups of the crossed module G∗ are:

π0(G∗) = Coker∂,

π1(G∗) = Ker∂.
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Extending the previous idea for higher values of n:

X ≃ |NG| (1)

n = 2. For a given Crossed module G∗, we can construct a
category Γ(G∗) such that

▶ Ob (Γ(G∗)) = G0
▶ 1-Mor (Γ(G∗)) = G0 ⋊G1

⋆ G1 acts on G0 by sending x0 7→ x0 · ∂f for f ∈ G1.

For equation 1, G = (Γ(G∗) ⇒ ∗) works.
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2-Crossed Module

2-Crossed Module

A 2-crossed modulea G∗ consists of a complex of G0-groups

G1 ×G1

G2 G1 G0

{·,·}

∂ ∂

(so that ∂∂ = 0) and ∂’s are G0-equivariant, where G0 acts on itself by

conjugation, such that G2
∂−→ G1 is a crossed module such that

(αf )x = (αx)f
x
for all α ∈ G2, f ∈ G1, x ∈ G0.

There is a function {·, ·} : G1 ×G1 → G2 called Peiffer lifting.

Compatibility conditions.

aRonald Brown and İlhan İçen. “Homotopies and Automorphisms of
Crossed Modules of Groupoids”. In: Applied Categorical Structures (2003),
p. 193.
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2-Crossed Module

Remark

The homotopy groups of a 2-crossed module G∗ are:

π0(G∗) = Coker(∂ : G1 → G0),

π1(G∗) = Ker(∂ : G1 → G0)/(Im(∂ : G2 → G1)),

π2(G∗) = Ker(∂ : G2 → G1).

Remark

The groups defined above are well-defined.

π1(G∗), π2(G∗) are abelian. (So, they could be seen as
corresponding homotopy groups of a space).
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Extending the previous idea for higher values of n:

X ≃ |NG|

n = 2. For a given Crossed module G∗, we can construct a
category Γ(G∗) such that

▶ Ob (Γ(G∗)) = G0
▶ 1-Mor (Γ(G∗)) = G0 ⋊G1

⋆ G1 acts on G0 by sending x0 7→ x0 · ∂f for f ∈ G1.

For equation 1, G = (Γ(G∗) ⇒ ∗) works.
n = 3. Now, for 2-Crossed modules, we extend this logic and
construct a 2-Category structure, and later we try to stabilize it
by putting a kind of commutative group law (i.e., a symmetric
monoidal structure).
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Stability
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Stability

We want to make the 2-Crossed modules stable.

The output of K-theory is in fact a spectrum X = {Xn}n≥0,
ΣXn → Xn+1.

Suspension

For a space X, the suspension ΣX is the quotient of X × I obtained by
collapsing X × {0} to one point and X × {1} to another point.
(ΣX = S1 ∧X).

Example: ΣSn = Sn+1
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Theorem 2 (Freudenthal Suspension Theorem)

For a spectrum X = {Xn}n≥0, the sequence

πi(Xn) → πi+1(Xn+1) → πi+2(Xn+2) → · · ·

eventually stabilizes.

Stable Homotopy Group

The ith stable homotopy group of X is:

πs
i (X) = lim−→

k

πi+k(Xk) ∼= πi+N (XN ), N ≫ 0
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Theorem 3 (The Stable Homotopy Hypothesis)

Symmetric monoidal structure corresponds to topological stability.

Stable 1-types Symmetric Monoidal Categories Stable Crossed Module

Stable 2-types Symmetric Monoidal 2-Categories Stable 2-Crossed Modules

...
...

...
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SM 2-Cat structure on a 2-CM
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Given a 2-CM G∗

G2
∂−→ G1

∂−→ G0

We can construct a 2-Cat Γ(G∗): To appendix

Ob(Γ(G∗)) = G0.
x0 ∈ G0.

1-Mor(Γ(G∗)) = G0 ⋊G1.

x0
f0−→ x1 such that x1 = x0 · ∂(f0).

2-Mor(Γ(G∗)) = G0 ⋊G1 ⋊G2.

x0 x1α

f1

f0

Such that f1 = f0 · ∂(α).
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Compositions of 2-cells:

x0 x1 = x0 x1

α1

α1α2

f0

f2

f1

α2

f0

f1

Figure 1: Vertical composition

x0 x1 x2 = x0 x2α β αg0β

f0

f1

g0

g1

f0g0

f1g1

Figure 2: Horizontal composition

They satisfy certain compatibility conditions.
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Theorem 4 (Eckmann–Hilton argument)

If a set is equipped with two monoid structures with unit objects, such
that each one is a homomorphism for the other, then the two structures
coincide and the resulting monoid is commutative.

A group G is abelian if and only if m : G×G → G is a
homomorphism. Taking motivation from here, we can say:

Defining a monoidal functor ⊗ : Γ(G∗)× Γ(G∗) → Γ(G∗) of
2-Categories, would give us stabilization, i.e., a symmetric
monoidal structure.
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Components of a Symmetric Monoidal 2-Category1 (SM 2-Cat) are:

A 2-Cat

Monoidal structure (⊗) on the 2-Cat

Braiding (β) on the monoidal structure

Left (η−|−−) and right (η−−|−) hexagonators

Syllepsis (γ) (Exclusive for 2-Cat)

1Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University
Press, 2021, pp. 384–396.
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Monoidal category

Definition 5

A monoidal category is a category M equipped with the following
data:

1 an object 1 ∈ Ob(M), called the unit object.

2 a functor: ⊗ : M×M → M called the tensor product.

3 a natural isomorphism αx,y,z : (x⊗ y)⊗ z
∼=−→ x⊗ (y⊗ z), called the

associator.

4 a natural isomorphism lx : x⊗ 1
∼=−→ x, called the left unitor.

5 a natural isomorphism rx : 1⊗ x
∼=−→ x, called the right unitor such

that the following diagrams commute:
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Pentagon identity

(w ⊗ x)⊗ (y ⊗ z)

((w ⊗ x)⊗ y)⊗ z w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z w ⊗ ((x⊗ y)⊗ z)

αw,x,y⊗zαw⊗x,y,z

αw,x,y⊗idz

αw,x⊗y,z

idw⊗αx,y,z

Triangle identity

(x⊗ 1)⊗ y x⊗ (1⊗ y)

x⊗ y

αx,1,y

lx⊗idy idx⊗ry
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Monoidal structure of 2-Crossed modules:

x0 x1 ⊗ y0 y1 = x0y0 x1y1α β (αy0 )g0β

f0

f1

g0

g1

f
y0
0 g0

f
y0
1 g1

Figure 3: Monoidal structure

This is a strict monoidal structure, which means associators
(αx,y,z), and unitors (lx, rx) are identities, and hence the pentagon
and triangle identities are also trivially satisfied.
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Braiding:

For every x0
f−→ x1 and y0

g−→ y1, we have

x0y0 y0x0

x1y1 y1x1

βx0,y0

fy0g gx0f

βx1,y1

β(x0,f),(y0,g)

Left (ηx|y,z) and right (ηx,y|z) hexagonators:

(yx)z y(xz) x(zy) (xz)y

(xy)z y(zx) x(yz) (zx)y

x(yz) (yz)x (xy)z z(xy)

ay,x,z

βx,z

a−1
x,z,y

βy
x,zβz

x,y

ax,y,z

βy,z

a−1
x,y,z

βx,yz

ηx|y,z

ay,z,x

βxy,z

ηx,y|z

a−1
z,x,y
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But since we have strict 2-category, we get:
yxz xzy

xyz yzx xyz zxy

βx,z βy
x,zβz

x,y

βx,yz

ηx|y,z
βy,z

βxy,z

ηx,y|z

All these satisfy naturality and certain compatibility conditions.
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Syllepsis
Given any two x, y ∈ G0, we have

yx

xy xy

βy,xβx,y

1

γx,y

For 1-Cat this 2-cell collapses to 1.

They satisfy naturality and certain compatibility conditions and
the following condition.

Symmetry condition:

xy yx xy yx

=

yx xy yx xy

βx,y

βx,y

idxy

βx,y

βx,y

r l

βy,x

γx,y
βx,y

βy,x

idyx
βx,y

γy,x
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Current work

From a given Waldhausen category, it is well know that we can get
a group, which is a 1-type, and a Stable Crossed module, which is
a 2-type.

Now, for a given Waldhausen category C, we want to find a 3-type.
So we are using the same procedure to get the 2-Crossed module
G∗.
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The generators for G0 are:
▶ [A] for any A ∈ Ob(C).

The generators for G1 are:
▶ [A0

∼−→ A1] for any WE.
▶ [A ↣ B ↠ B/A] for any cofiber sequence.

The generators for G2 are:

▶

A2

A0 A1
∼

∼ ∼ ▶

A0 B0 C0

A1 B1 C1

∼ ∼ ∼

▶

C/B

B/A C/A

A B C

But this is not stable yet. So we make it stable by realizing the
SM 2-Cat structure on it.
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loop space”. In: Forum Mathematicum (1997), pp. 725–733.
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Thank You!
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Waldhausen category

A Waldhausen categorya C is a category with a zero object, 0 equipped
with two classes of morphisms: weak equivalences (WE) and
cofibrations (CO) such that it has a notion of taking quotients, and
satisfy certain conditions.

iso(C) ⊆ WE(C) ∩ CO(C).

0 → X ∈ CO(C) for all X ∈ Ob(C).

If A ↣ B is a cofibration and A → C is any morphism in C, then
the pushout B

⋃
AC of these two maps exists in C and

C ↣ B
⋃

AC is a cofibration.
A B

C B
⋃

AC

aCharles A. Weibel. The K-book An Introduction to Algebraic K-theory.
American Mathematical Society, 2010, pp. 172–174.
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Waldhausen category

Gluing axiom:
B
⋃

AC

C A B

C ′ A′ B′

B′⋃
A′ C ′

∼∼ ∼ ∼

The induced map B
⋃

AC → B′⋃
A′ C ′ is also a weak equivalence.
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2-Categories
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Definition 6

A (strict) 2-category C is comprised of the following:

0-Cells (Objects): Denoted by Ob(C).

1-Cells (Morphisms): For A,B ∈ Ob(C), a set Hom(A,B) of 1-cells
from A to B, also known as morphisms. A 1-cell is often written

textually as f : A → B or graphically as A
f−→ B.

2-Cells: For A,B ∈ Ob(C), f, g ∈ Hom(A,B), a set Face(f, g) of
2-cells from f to g. A 2-cell is often written textually as
α : f ⇒ g : A → B or graphically as follows:

A B

g

f

α

1-Composition: For each chain of 1-cells A
f−→ B

g−→ C, a 1-cell

A
f ;g−−→ C.
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Definition 6

Vertical 2-Composition: For a chain of 2-cells

A B

h

f

g

β

α

, a 2-cell A B.

h

f

α;β

Horizontal 2-Composition: For each chain of 2-cells

A B C

f ′

f

g′

g

α β , a 2-cell

A C.

f ′;g′

f ;g

α∗β
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Definition 6

Associativity: For all the compositions.

Identities of 1-cells and 2-cells exist and are compatible with all
the compositions.

2-Interchange: Every clover of 2-cells

A B Cg

h

f

β

g′

h′

f ′

β′

α α′

satisfies

(α;β) ∗ (α′;β′) = (α ∗ α′); (β ∗ β′).
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Stable Crossed Module

Definition 7

A stable crossed module (SCM)a G∗ is a crossed module ∂ : G1 → G0

together with a map Back to main
⟨·, ·⟩ : G0 ×G0 → G1

satisfying the following for any f, g ∈ G1, x, y, z ∈ G0:

1 ∂⟨x, y⟩ = [y, x],

2 fx = f + ⟨x, ∂(f)⟩,
3 ⟨x, y + z⟩ = ⟨x, y⟩z + ⟨x, z⟩,
4 ⟨x, y⟩+ ⟨y, x⟩ = 0.

aFernando Muro and Andrew Tonks. “The 1-type of a Waldhausen
K-theory spectrum”. In: Advances in Mathematics 216 (2007), pp. 179–183.
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Simplicial Set

A simplicial set X ∈ sSet is Back to main

for each n ∈ N a set Xn ∈ Set (the set of n-simplices),

for each injective map ∂i : [n− 1] → [n] of totally ordered sets
([n] : = (0 < 1 < · · · < n),

a function di : Xn → Xn−1 (the ith face map on n-simplices)
(n > 0 and 0 ≤ i ≤ n),

for each surjective map σi : [n+ 1] → [n] of totally ordered sets,

a function si : Xn → Xn+1 (the ith degeneracy map on
n-simplices) (n ≥ 0 and 0 ≤ i ≤ n),

such that these functions satisfy the simplicial identities:

didj = dj−1di for i < j

disj =


sj−1di, when i < j,

1, when i = j, j + 1,

sjdi−1, when i > j + 1

sisj = sj+1si when i ≤ j
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The face maps, and degeneracy maps for the Nerve of a category are as
follows:

di : Nk(C) → Nk−1(C):

(A1 → · · · → Ai−1
fi−1−−−→ Ai

fi−→ Ai+1 → · · · → Ak)

(A1 → · · ·Ai−1
fi◦fi−1−−−−→ Ai+1 → · · ·Ak)

si : Nk(C) → Nk+1(C):

(A1 → · · · → Ai → · · · → Ak) 7→ (A1 → · · ·Ai
id−→ Ai → · · ·Ak).
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Some facts

Examples of a model category which is not a Waldhausen
category: Triangulated categories.

The functor ⊗ : Γ(G∗)× Γ(G∗) → Γ(G∗) is in fact an oplax
functor.

Oplax functor

If F : C → D is a functor such that, for 1-cells f, g, we have
F (f ◦ g) ∼= F (f) ◦ F (g) (but not exactly equal). Then the functor F is
called as an oplax functor.
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Suspension

Smash product

Let X,Y be two spaces. Then their smash product
X ∧ Y := X × Y/X ∨ Y .

Example 8

S1 ∧ S1 = S2, in fact Sn ∧ Sm = Sn+m for any n,m ∈ N.

Remark

ΣX ∼= S1 ∧X.

ΣkX ∼= Sk ∧X.
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Remark

In a category of R-modules, we have

Hom(X ⊗A, Y ) ∼= Hom(X,Hom(A,Y)).

Similarly, in case of pointed topological spaces, smash product
plays the role of the tensor product. If A,X are compact
Hausdorff then we have

Hom(X ∧A, Y ) ∼= Hom(X,Hom(A,Y)).

So, in particular, for A = S1, we have

Hom(ΣX,Y ) ∼= Hom(X,Hom(S1, Y )) = Hom(X,ΩY ).

Here ΩY carries compact-open topology.

This implies, the suspension functor Σ ⊢ Ω, the loop space functor.
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Definition 9

Let X and Y be two topological spaces, and let C(X,Y ) denote the set
of all continuous maps from X to Y . Given a compact subset K of X
and an open subset U of Y , let V (K,U) denote the set of all functions
f ∈ C(X,Y ) such that f(K) ⊆ U . Then the collection of all such
V (K,U) is a subbase for the compact-open topology on C(X,Y ).
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Properties of 2-CM

Proposition

Given a SQuad Gab
0 ⊗Gab

0
w−→ G1

∂−→ G0. Then the homomorphism w is
central. Back to main

Proof.

[a,w({y} ⊗ {z})] = w({∂w({y} ⊗ {z})} ⊗ {∂(a)})
= w({[z, y]} ⊗ {∂(a)}) = w(0⊗ {∂(a)}) = 0.

Similar result is also true for SCM.

Proposition

Given a 2-CM G∗, π2(G∗) is abelian.

Proof.

From the result above, and the definition of π2(G∗), π2(G∗) is central
in G2, in particular it is abelian.
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Proposition

Given a 2-CM G∗, π1(G∗) is abelian.

Proof.

Im ∂ is normal in G0 since:

∂(fx) = (∂f)x = x−1(∂f)x, f ∈ G1, x ∈ G0.

Similarly, π1(G∗) makes sense since Im(∂ : G2 → G1) is normal in G1,
hence in particular in Ker(∂ : G1 → G0). Then,

f0∂α0 · f1∂α1 = f0f1∂(α
f1
0 α1) = f1f2∂(⟨f0, f1⟩αf1

0 α1)

= f1f0∂(α
f0
1 α0)∂((α

f0
1 α0)

−1⟨f0, f1⟩αf1
0 α1)

= f1∂α1 · f0∂α0 · ∂((αf0
1 α0)

−1⟨f0, f1⟩αf1
0 α1)
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Spectrum

Definition 10

A spectrum X is a sequence

· · · → X2 → X1 → X0.

of pointed spaces {Xn}n≥0 with the structure maps ΣXn → Xn+1.
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Definition 11

A stable quadratic module C∗ is a commutative diagram of group
homomorphisms To appendix

Cab
0 ⊗ Cab

0

C1 C0

w commutator

∂

such that given ci, di ∈ Ci, i = 0, 1,

1 w({∂(c1)} ⊗ {∂(d1)}) = [d1, c1] = d−1
1 c−1

1 d1c1,

2 w({c0} ⊗ {d0}+ {d0} ⊗ {c0}) = 0. (The stability condition).

C0 → Cab
0

x 7→ {x}

Remark

The homotopy groups of C∗ are:

π0(C∗) = Coker∂,

π1(C∗) = Ker∂.
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Detailed SQuad structure for a Waldhausen category2

The generators for dimension 0 are: Back to main
▶ [A] for any A ∈ Ob(C).

The generators for dimension 1 are:
▶ [A0

∼−→ A1] for any w.e.
▶ [A ↣ B ↠ B/A] for any cofiber sequence.

such that the following relations hold (i.e., we define ∂,w):
▶ ∂([A0

∼−→ A1]) = −[A1] + [A0].
▶ ∂([A ↣ B ↠ B/A]) = −[B] + [B/A] + [A].
▶ [0] = 0.

▶ [A
id−→ A] = 0.

▶ [A
id−→ A ↠ 0] = 0, [0 ↣ A

id−→ A] = 0.
▶ For any composable weak equivalences A

∼−→ B
∼−→ C,

[A
∼−→ C] = [B

∼−→ C] + [A
∼−→ B].

2Fernando Muro and Andrew Tonks. “The 1-type of a Waldhausen K-theory
spectrum”. In: Advances in Mathematics 216 (2007), pp. 179–183.
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▶ For any A,B ∈ Ob(C), define the w as follows:

w([A]⊗ [B]) := ⟨[A], [B]⟩

=

−[ B A
∐

B A
i2 p1

] + [ A A
∐

B B
i1 p2

].

Here,
A A

∐
B B

i1

p1 p2

i2

are natural inclusions and projections of a coproduct in C.
▶ For any commutative diagram in C as follows:

A0 B0 B0/A0

A1 B1 B1/A1

∼ ∼ ∼

we have

[A0
∼−→ A1] + [B0/A0

∼−→ B1/A1] + ⟨[A],−[B1/A1] + [B0/A0]⟩
=

−[A1 ↣ B1 ↠ B1/A1] + [B0
∼−→ B1] + [A0 ↣ B0 ↠ B0/A0].

Milind V. Gunjal April 21st, 2022 19 / 20



▶ For any commutative diagram consisting of cofiber sequences in C

as follows:
C/B

B/A C/A

A B C
we have,

[B ↣ C ↠ C/B] + [A ↣ B ↠ B/A]

=

[A↣ C ↠ C/A] + [B/A ↣ C/A ↠ C/B] + ⟨[A],−[C/A] + [C/B] + [B/A]⟩.
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