2-type of the K-theory of a Waldhausen category J

Milind V. Gunjal

Department of Mathematics
Florida State University

December 9', 2021

Milind V. Gunjal

December 9t 2021 1 /49



Doctoral Committee

o Dr. Ettore Aldrovandi
Advisor

e Dr. Piers Rawling
University Representative

e Dr. Paolo Alufli
Committee Member

e Dr. Mark van Hoeij
Committee Member

e Dr. Kyounghee Kim
Committee Member

Milind V. Gunjal December 9“‘, 2021 2/49



Outline

@ Waldhausen categories

© K-theory of Waldhausen categories
© Examples of cells

@ Motivation

@ Approximation of a sSet by n-types
O Models for n-types: n =0, 1, 2

@ A diagram of low types

© SM 2-Cat structure on a 2-CM

Milind V. Gunjal

December 9% 2021 3 /49



Waldhausen categories J
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Definition 1

Let € be a category equipped with a subcategory co = co(€) of
morphisms in the category € called cofibrations® (indicated with
feathered arrows —). The pair (C, co) is called a category with
cofibrations if the following axioms are satisfied:

@ Every isomorphism in C is a cofibration.

@ There is a zero object, 0 in €, and the unique morphism 0 — A in
C is a cofibration for every A € 0b(C). (i.e., every object of € is
cofibrant).

@ If A — B is a cofibration and A — C' is any morphism in €, then
the pushout B|J, C of these two maps exists in € and
C — B|J, C is a cofibration.

A— B

| |

C —— BU,C

?Charles A. Weibel. The K-book An Introduction to Algebraic K-theory.
American Mathematical Society, 2010, pp. 172-174.
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Remarks
@ Coproduct B[] C of any two objects B,C € Ob(C) exists.
Since, B][C =B, C.
@ Every cofibration A — B in C has a cokernel B/A.
Since, B/A = B|J40.
@ We refer to A — B — B/A as a cofibration sequence in C.

Example 2
© The category R—Mod, for any ring R is a category with
cofibrations:
The cofibrations are the injective maps.
@ In fact, any exact category, hence any abelian category is naturally
a category with cofibrations:
The cofibrations are the monomorphisms.
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Definition 3
A Waldhausen category € is a category with cofibrations, together with
a family w(C€) of morphisms in € called weak equivalences (abbreviated
w.e. and indicated with =) satisfying the following axioms:
@ Every isomorphism in C is a w.e.
© Weak equivalences are closed under composition.
(So we may regard w(C) as a subcategory of C.)

@ Gluing axiom:

BU,C
T ¥
c A B
SR O 2
c Y B
A \‘u L
B UA/ o4

The induced map B|J,C — B'|J4 C' is also a weak equivalence.
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Definition 4

A Waldhausen category C is called saturated if whenever f, g are
composable maps, and fg is a w.e., f is a w.e. if and only if g is.

Remark

We will consider only saturated Waldhausen categories, and hence we
will just call them Waldhausen categories by abuse of language.

Example 5

The category of bounded above (k > 0) chain complexes over a ring R,
Chp, is a Waldhausen category by defining a map
f:M — N e Homcp,(M,N) is

e a w.e. if f induces isomorphism on homology groups.

@ a cofibration if for each k£ > 0 the map f : M — N is a
monomorphism with a projective module as its cokernel.
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Example 6

Any category with cofibrations (C, co) may be considered as a
Waldhausen category in which the category of weak equivalences is the
category iso(C) of all isomorphisms.

Definition 7

A functor between Waldhausen categories is exact if it is pointed (0
— 0), takes cofibrations to cofibrations, and w.e. to w.e., and preserves
the pushout:

|

U

Q—n

—
—— B

C

b
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K-theory of Waldhausen categories J
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Definition 8

Let C be a Waldhausen category. Ky(C)® is the abelian group
presented as having one generator [C] for each C' € 0b(€), subject to
following relations:

@ [C] = [C'] if there exists a w.e. C = C".

@ [C] = [B] + [C/B] for every cofibration sequence B — C — C/B.

“Charles A. Weibel. The K-book An Introduction to Algebraic K-theory.
American Mathematical Society, 2010, pp. 172-174.

Remarks
These relations imply:
Q@ [0] =0.
Q@ [BIIC]=[B]+][C].
@ Since pushouts preserve cokernels, [B|J, C| = [B] + [C] — [A].
Q [B/A] = [B] — [A] since, B/A = B|J,40.

v
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e We will now see Se-construction. S stands for Segal as in Graeme
B. Segal. Segal gave a similar construction for additive categories
but it was reinvented by Waldhausen for Waldhausen categories.

o For any category €, the arrow category! ArC is the category with
Ob(ArC) = Morphisms in €, a morphism from f :a — b to
g :c— dis a commutative diagram in €

a ——C

ol

b——d

Consider [n] = {0+ 1+ --- <= n} as a category, and the arrow
category Ar([n]P).

For e.g. in Ar([11]°P) there is a unique morphism from the object
(2 —4) to (3 — 7) and no morphism in the other way.

!Bjgrn Ian Dundas, Thomas G. Goodwillie, and Randy McCarthy. The Local
Structure of Algebraic K-Theory. Springer-Verlag London, 2013, pp. 24-32.
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Definition 9
Let © be a category with cofibrations. Then SC = {[n| — S,C} is the
simplicial category which in degree n is the category S, C of functors
C : Ar([n]°?) — € satisfying the following properties:
Q@ Forall j >0,C(j=j5)=0.
Q Ifi <j <k, then C(i <j) — C(i <k) is a cofibration, and
Cli<j) — C(i<k)

l l

Cli=34) — CE<k)

is a pushout.
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e From the S,-construction, we can have for following:

SewC = {[n] — Ob(S,wC)} € sSet.

So, we can have the loop space of the geometric realization:
K(C) := Q|SewC|.

@ Hence, we have:

7 (K (€)) = mi(@Swe]) = 71 (|Sswe]) 2 iy (Sw).
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e We define a construction for a Waldhausen category €, denoted by
TeC.
Where, T),C is generated by N,(S,wC), p+q—1=n.
Here, N stands for the nerve of the category, and w stands for
considering weak equivalences.

o So, N,(S,w€) € s?Set. Up on taking its anti-diagonal (via a w.e.
called Artin-Mazur map) becomes a sSet.

N,Sw€ —— d(N,S,we) ArinMazur, iy g 4,@)
e Since it is known that Ob(Sew€) = d(N,(S,wC)), the two

simplicial sets Ob(S,wC) and T,C are weakly equivalent, so they
have same homotopy groups.
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Examples of cells J
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Example 10

Given a Waldhausen category C, :
To(C)® consists of:

A

Figure 1: No(S1wC)

Similarly, for the 1-type:

T1(C) consists of: Ay —s A

Figure 2: N;(S;wC)
A—— B —— C

Figure 3: Ny(SowC)

“Fernando Muro and Andrew Tonks. “The 1-type of a Waldhausen
K-theory spectrum”. In: Advances in Mathematics 216 (2007), pp. 179-183.

Milind V. Gunjal
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Example 11

Again, similarly, for the 2-type:
T»(C) consists of:

Figure 4: Ny(S3wC)

Ap > > By » Ch
Aq oy > By » C

Figure 5: N;(SowC)

v
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Example 11

Figure 6: No(S3wC)
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Motivation
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Fact 12

o Given a Waldhausen category C, the simplicial set above is a
zero-level of the spectrum K(C). So, we get the following induced
maps:

CxD biexzact &

° K(C) A K(D) + » K(€)

mi(K(C)) x mj(K(D)) ———— mi;(K(€))
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Remark

e We know?, for a given biexact functor between Waldhausen
categories:
CxD—E

we have the classical homomorphisms:
Ko(€) x Ko(D) — Ko(€),
Ko(e) X Kl(‘D) — Kl(g),
Kl((?) X Ko(D) — Kl(E)
@ So, extending this to 2-type, we expect to find the induced map:
Kl(e) X Kl(D) = K2(8)

“Fernando Muro and Andrew Tonks. “The 1-type of a Waldhausen
K-theory spectrum”. In: Advances in Mathematics 216 (2007), pp. 179-183.
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Approximation of a sSet by n-types J
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Definition 13

n-type® is the full subcategory of Top*/ = (i.e., pointed topological
spaces up to homotopy equivalence) consisting of connected CW-spaces
Y with 7;(Y) =0 for i > n.

“Hans-Joachim Baues. “Combinatorial Homotopy and 4-Dimensional
Complexes”. In: Walter de Gruyter (1991), pp. 171-177.
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Fact 14
For a connected CW-complex X, one can construct a sequence of
spaces P, X such that mi( P, X) = mi(X) fori <n, and m;(P,X) =0 for
1 >n, and for i, : X — P, X, and j, : P, X — P,_1X we have
Jn Oty = tn_1 for alln > 1. :

J{ja

P X

JjQ
"o, i2 PlX
(A |

Xﬁ*
0

Figure 7: Postnikov tower
This commutative diagram is called a Postnikov tower® of X, the
n-type spaces P, X are called truncations of X.

?Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002,
pp. 10, 354-355.
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Postnikov tower of a sSet

o If X € sSet, X is fibrant, then P, X = Cosk,(X), the tower of
Coskeletons? via Kan extensions.

AV —— X

AT —— %
Figure 8: Fibrant object X in sSet

» A" is a horn.
» The lift exists for each m,k € N, k < m.

o In general, if X is not fibrant, we can use a fibrant replacement
X — RX where P,(X) = Cosk,(RX).

o In general, the Se-construction is not fibrant, so we work with a
different (algebraic) model.
2W. G. Dwyer, D. M. Kan, and J. H. Smith. “An obstruction theory for
simplicial categories”. In: Nederl. Akad. Wetensch. Indag. Math. 48.2 (1986),
pp. 153-161. 1ssNn: 0019-3577.
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Models for n-types: n =0, 1, 2 J
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We want algebraic model for the types in the Postnikov tower:

Py(T.C) ~ N,(D{P(€))

!

Py(T.C) ~ N, (DY (@)
C 4 Py(T,C)
e n = 0: Group, a fundamental group.
o n=1 D) pMe) L pi(e), a SQuad.
o n=2 D©): P % pPe) L pP(e), a $2-CM.
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Models for 1-type

e It is known that a stable quadratic module (SQuad)? is 1-type, so
we construct a SQuad for the given Waldhausen category C.

e Also, stable crossed modules (SCM) are models of (algebraic)
1-types.
e SQuad embeds as reflective subcategory in SCM.

» A full subcategory i : € — D is reflective, if the inclusion functor 4
has a left adjoint.

3Fernando Muro and Andrew Tonks. “The 1-type of a Waldhausen K-theory
spectrum”. In: Advances in Mathematics 216 (2007), pp. 179-183.
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Definition 15

A stable quadratic module Cy is a commutative diagram of group
homomorphisms

ab ab
wl commutator
Cl L) C()

such that given ¢;,d; € C;,i = 0,1,
0 w({d(c))} & {8(d)}) = i, 1] = di e M,
Q w({co} ® {do} + {do} ® {co}) = 0. (The stability condition).
Co — CP

x— {z}

Remark

The homotopy groups of C, are:
e my(Cy) = Cokero,
o m1(Cy) = Kero.

Milind V. Gunjal December 9“‘, 2021 30 /49
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1-type of a Waldhausen category

U: SQuad 5% Set x Set

Cy— (Co, Cl)

The functor U has a left adjoint F', and a SQuad F(FEy, E1) is called
free stable quadratic module on the sets Ey and Ej.

Fact 16

Given a Waldhausen category C, we can define a corresponding SQuad
F(Ty(C), T1(©))?, where Tp(C), Ti(C) come from example 10, 11.

“Fernando Muro and Andrew Tonks. “The 1-type of a Waldhausen
K-theory spectrum”. In: Advances in Mathematics 216 (2007), pp. 179-183.
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A diagram of low types J
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SQuad &t SOM <« §2-CM +— SM 2-cat

lForget lFOYget lForget

Quad ——— CM «— 3 2-CM

SQuad: Stable quadratic modules

Quad: Quadratic modules

e CM: Crossed modules

SCM: Stable Crossed modules

2-CM: 2-Crossed modules

S2-CM: Stable 2-Crossed modules

SM 2-Cat: Symmetric monoidal 2-Categories
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Definition 17

A crossed module® G consists of a Gy-equivariant group
homomorphism, where Gy acts on itself by conjugation.
G1 i) G()
where the action of Gy on (G; satisfies
o f%=g"'fg.

?H.-J. Baues and Daniel Conduché. “On the 2-type of an iterated loop
space”. In: Forum Mathematicum (1997), pp. 725-733.

Remark

The homotopy groups of the crossed module G, are:
e mo(G.) = Cokero,
o m1(Gy) = Kerd.
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Definition 18
A 2-crossed module® G, consists of a complex of Gy-groups

G1XG1

o)
GQ 9 > G1 9 > GO
(so that 90 = 0) and 0’s are Gp-equivariant, where Gy acts on itself by

conjugation, such that Go 9, (1 is a crossed module such that
o (af)® = (a®)f" for all a € Gy, f € G1,z € Gy.
@ There is a function (-,-) : G; X G1 — G2 called Peiffer lifting

satisfying:

o a(f,g) = f1g~ ' fg%7, O (f.gh) = (f.h)(f, )",
@ (9o, f) = a lal, Q (g, h) = (f,h)9(g, hF),
@ (f,00) = (=) a¥’, 0 (f,9)" = (f*,g%).

For all x € Go, f,g9,h € G1,a € Gs.

“Ronald Brown and Ilhan Icen. “Homotopies and Automorphisms of
Crossed Modules of Groupoids”. In: Applied Categorical Structures (2003),
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Remark
The homotopy groups of a 2-crossed module G, are:

o my(G,) = Coker(9 : G1 — Gy),
o m(Gy) =Ker(9: Gy — Go)/(Im(0 : G2 — G1)),
() 7I'2(G*) = Kel‘(a : G2 — Gl)

Milind V. Gunjal
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SQuad Beflet oM« S2-CM +—— SM 2-Cat

lForget lForget lForget

Quad — CM «——— 2-CM

@ S52-CM: Stable 2-Crossed modules
e SM 2-Cat: Symmetric monoidal 2-Categories

Why are we doing this?

e Why stability?: Because of the stability condition, the spectrum
remains invariant under suspension, i.e., on taking suspension, the
homotopy groups shift to next level without changing anything
else.

e Why SM 2-Cat?: Because we know what SM 2-Cats are, whereas
it is difficult to deduce the stabilization from 3-types.
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SM 2-Cat structure on a 2-CM J
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Components of a Symmetric monoidal 2-Category* (SM 2-Cat are):
o A 2-Cat
Monoidal structure (®) on the 2-Cat

Braiding () on the monoidal structure

Left (n_—_) and right (7___) hexagonators

Syllepsis () (Exclusive for 2-Cat)

4Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University
Press, 2021, pp. 384-396.
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Given a 2-CM G,

G % e G
We can have a 2-Cat I'(G.):
e Ob(I'(Gy)) = Gh.
o € Gy.

o 1-Mor(I'(G4)) = Gy x Gi.
ZQ fo, x1 such that x1 = zod(fo).
) Q-MOT(F(G*)) = G() X Gl X GQ.

Such that f; = foa(a)
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Compositions of 2-cells:

fo
e "
1
fl /ﬂ\
Tg ——— 11 = o ajaz T
W f1
f2
Figure 9: Vertical composition
fo 90 fogo
zo ﬂa x1 ﬂﬁ x = T ﬂoﬂoﬂ x2
1 1 191

Figure 10: Horizontal composition

They satisfy certain compatibility conditions.
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@ Monoidal structure of 2-Crossed modules:

fo 90 1090
/\ /\
To ﬂ" 1 & Yo ﬂﬂ Y1 = ToYo ﬂcﬂ“ﬁ T1Y1
\_/ \_/I
h 9 f”sh

Figure 11: Monoidal structure

The functor -® _: I'(G4) x I'(G«) — I'(G4) is in fact a lax functor.

f¥og
f
To — T1 Y Yo 7 Y1 = ToYo {g.f%0} 11

\_/’

gfvt

Figure 12: Lax functor
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e Braiding:

For every xg i) x1 and yo EN Y1, we have

Bao.vo
ZoYo Yoo
B(eo.£),(w09)
fYog g®of
T1Y1 Borw Y11
T1,Y1

o Left (1,,.) and right (1, ,.) hexagonators:

yrz xzy
ﬂ;,y Ez,z By,z ﬁg,z
nzly,ZW \ nm,yzﬂ
TYz Bo Yz TYz B zxy

All these satisfy naturality and certain compatibility conditions.
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o Syllepsis
Given any two z,y € G, we have

yx
Y,y
Ty 1 > Y

e For 1-Cat this 2-cell collapses to 1.

e They satisfy naturality and certain compatibility conditions.
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S9C as a category with cofibrations

e Given a category with cofibrations €, we can define a category
called S>CP which has (Ob(S2€)) = collection of cofibration
sequences, morphisms between two objects as follows:

Ao — B() —_—> Bo/Ao

.

A1 — Bl —_—> Bl/Al
o We can define cofibrations in the category S2C. A map like the one
above is a cofibration if the vertical maps are cofibrations and the
map from A; [] A, Bo — Bi is a cofibration.
Ao By By /Ao

I
A1 114, Bo
T *\\

o

Ay B B /A

Milind V. Gunjal December 9“‘, 2021 1/28




Remark

It can be seen that, with the similar pattern S,C€ is a category with
cofibrations for every n € N. Hence, one can consider S, (S,C) and keep
on doing this. This will give us a spectrum. However, we are not
working with this spectrum in this study. We are just considering the
first level of this spectrum, i.e., we are not considering the cofibration
structure over S5,,C for n > 2.
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o Consider Foreet
U: SQuad —2%, Set x Set

C, > (Cy, CY).

The functor U has a left adjoint F', and a SQuad F(Ey, E1) is
called free stable quadratic moduleB! on the sets Ey and Ej.
o Given a set F,

» denote the free generated with basis E by (E),

» free abelian group with basis E by (E)?,

» free group of nilpotency class 2 with basis E by (E)™ (i.e., the
quotient of (F) by triple commutators),

e Given an abelian group A,
» denote the quotient of AQ Aby a®b+b®a,a,be A by &°A.
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e Given a pair of sets Ey and F1,

» write Fy UJFE; for the set whose elements are the symbols ey and
Oe; for each eg € Ey,e1 € Ej.

Then we can define the free SQuad by considering:
> F(E07E1)O = <E0 U aE‘1>7lil7
» F(Ey, E1)1 = ®2<E>ab x (Eg x E1>ab % <E1>nil.
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Simplicial Set

A simplicial set X € sSet is
o for each n € N a set X,, € Set (the set of n-simplices),
e for each injective map 0; : [n — 1] — [n] of totally ordered sets
([n]: =(0<1l<---<n),
e a function d; : X,, — X,,—1 (the ith face map on n-simplices)
(n>0and 0<i<n),
e for each surjective map o; : [n + 1] — [n] of totally ordered sets,
e a function s; : X,, — X,,41 (the i degeneracy map on
n-simplices) (n > 0 and 0 < i < n),
@ such that these functions satisfy the simplicial identities:
didj = dj_ldi for ¢ <jJ
Sj_ldi, when ¢ < 7,
disj = 1, when ¢ = 5,5+ 1,
dei—17 when ¢ > j+ 1

5is; = sj415; when 1 < j
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Nerve of a category

Nerve of a small category C is a simplicial complex No(C).

e Ny(C) = 0-cells = 0b(C):
o A

e Ni(C) = 1-cells = Morphisms of C:

A, L4,

@ Ny(C) = 2-cells = A pair of composable morphisms in C:
As

fzof/' r\fz
4 fi

i.e., generated from A £> Ao f—2> As.
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@ N3(C) = 3-cells = A triplet of composable morphisms in C:

3
J’f3
faof1 A, f2
faofaofi f3ofe

f1

i.e., generated from A f—1> Ao f—2> Az f—3> Ay.
@ and so on.

) di : Nk(e) — Nk 1(@)'

Ay

~
b
[\

(A = - = A; 1—>A —>A2+1—> - = Ag)

|

fiofi

(A1—>~-AZ‘_1 —_1>AZ+1—>Ak)

it Ng(€C) — Ni11(C):
(A1—>~--—>Ai—>--~—>Ak)|—>(A1—>---Ai£>AZ-—>---A,€).
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Definition of a Quad®

Definition 19

A pre-crossed module G, is a equivariant Gg-group homomorphism
0 : G1 — Gp, where G acts on itself by conjugation.

SHans-Joachim Baues. “Combinatorial Homotopy and 4-Dimensional
Complexes”. In: Walter de Gruyter (1991), pp. 171-177.
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Definition 20
A quadratic module (w, d,9) is a complex of Gg-groups
Gcr (Gcr)ab

where, G{" is a group such that the pre-cross module 0 : G1 — Gy
becomes a crossed module 0 : G{* — Go.
such that

e 0:G1 — Gy is a nil(2)-module.

@ 00 =0, 0w = w = Peiffer commutator map:
wz®y)=-z—y+z+y”
@ All homomorphisms are equivariant with respect to the action of
Go
o 9% = f+w({0f} ® {z} + {z} + {0f}) for all f € Go,x € G.
o w({da} ® {0b}) =[a,b] = —a—b+a+b.
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Remark
e Putting Gy = 0 in the definition above gives us the Definition 15.

e Homotopy groups of the quadratic module o = (w, d,d) can be
defined as:
71 (o) = Coker(9),
ma(0) = Ker(9)/Im(9),
m3(0) = Ker(9).
e From Definition 15, we can conclude that Cy and C are groups of
nilpotency class 2.
Given z,y, z € Cp, we have:

[z, [y, 2]l = dw({ly, 2]} ® {z}) = Bw(0 ® {z}) = 0.

Similarly, given f,g,h € C; we have:
[f, 19, ]l = w({2(lg, h])} ® {0(f)}) = w({[9(9), O(R)]} ® {O()}) = w(0 & {2(f)}) = 0.

v
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Detailed SQuad structure for Fact 16°

@ The generators for dimension 0 are:
> [A] for any A € 0b(0@).
@ The generators for dimension 1 are:
» [Ag = Ay] for any w.e.
» [A— B — B/A] for any cofiber sequence.
e such that the following relations hold (i.e., we define 9, w):
A([Ao = A1]) = —[A] + [Ag].

v

>%A;B*BMD:%E+WMHVﬂ
>[4 4] =o.
> [AXS A 0]=0,0— A% A]=0.

v

For any composable weak equivalences A = B = C,

A C)=[B >0 +]4> Bl

5Fernando Muro and Andrew Tonks. “The 1-type of a Waldhausen K-theory
spectrum”. In: Advances in Mathematics 216 (2007), pp. 179-183.
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» For any A, B € 0b(@), define the w as follows:

—[B>i—2>A]_[BL»A]+[A>i—1>A]_[Bﬁ»B].
Here, i1 iz
A p<:> Al B ‘p:> B
1 2
are natural inclusions and projections of a coproduct in C.
» For any commutative diagram in € as follows:
AO — By —» Bo/AO
A1 — Bl e Bl/Al
we have

[Ao = Ai] + [Bo/Ao = B1/Ai] + ([A], =[B1/A1] + [Bo/Ao))

7[A1 — B1 - Bl/Al] + [BO :—> Bl] + [A() — BO - BQ/A()}
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» For any commutative diagram consisting of cofiber sequences in €

as follows:
C/B
B/A—— C/A
A B C
we have,

[B»— C — C/B]+[A— B — B/A]

[A— C — C/A]+ [B/A— C/A — C/B] + ([4], —[C/A] + [C/B] + [B/A]).
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Definition of 2-categories

Definition 21

A (strict) 2-category € is comprised of the following:
o 0-Cells (Objects): Denoted by Ob(C).
o 1-Cells (Morphisms): For A, B € 0b(C), a set Hom(A, B) of 1-cells
from A to B, also known as morphisms. A 1-cell is often written
textually as f : A — B or graphically as A 4 B.

@ 2-Cells: For A, B € 0b(C), f,g € Hom(A, B), a set Face(f,g) of
2-cells from f to g. A 2-cell is often written textually as
a: f=g:A— B or graphically as follows:

o
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Definition 21
o 1-Identities: For each A € 0b(C), a 1-cell A — “a, A

° 1- Composition: For each chain of 1-cells A —> B C, al-cell
LN}

e Vertical 2—Composition: For a chain of 2-cells

A

g , g sa2cel 4 a;ﬁﬂ

W

A
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Definition 21
e Horizontal 2-Composition: For each chain of 2-cells

f/ g/
A/QH\BW\C’&‘ZCGH

\f/f ;

I'q
A /aﬂ\ c
\f/
g

o 1-Identity: Every 1-cell A I, B satisfies (ida; f) = f = (f;idB).

o 1-Associativity: Every chain of 1-cells A i> B % 0 I D satisfies
(f;9);h = f; (g h).

e Vertical 2-Identity: Every 2-cell a: f = g : A — B satisfies

idpy o= o = aidy.
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Definition 21

@ Vertical 2-Associativity: Every chain of 2-cells
A A B satisfies (a; 8);7 = o (6;7).
\ g /{

f
e Horizontal 2-Identity: Every 2-cell a: f = g : A — B satisfies
idig, ¥ = o = o % id;q.

Q

o 2-Identity: Every sequence of 1-cells A i) B % C satisfies
idy * idg = idy,g.
e Horizontal 2-Associativity: Every chain of 2-cells

D satisfies

f ' W
~_" 7 ~ " 7 1 -

f g h
(axB)xy=ax(Bx*7).

v
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Definition 21
° 2—Interchange' Every clover of 2-cells

ﬁﬂ AN

A . B J s O satisfies
W W
f/

(o B) * (0/; B') = (axa);(Bxp).

Milind V. Gunjal
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SQuad embeds as a reflective subcategory of SCM

Definition 22

A stable crossed module (SCM)* G, is a crossed module 9 : G; — Gy
together with a map

<-,->:G0XG0—>G1

satisfying the following for any f,g € G1,z,y, 2z € Go:
0 9(z,y) = [y, =],
Q 7= [+ (z,0(f)),
@ (z,y+2) = (z,y)* + (z,2),
Q (z,y)+ (y,xz) =0.

“Fernando Muro and Andrew Tonks. “The 1-type of a Waldhausen
K-theory spectrum”. In: Advances in Mathematics 216 (2007), pp. 179-183.

5 In SCM, the condition in the definition of crossed modules is now
equivalent to (0(f),d(g)) = lg, f]-
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Proposition
The category SQuad is a full subcategory of the category SCM given
by those objects

Co><00ﬂ>012>00

which satisfy

{e,[d,"]) =0, for each ¢,c, " € Cy. (1)

v

Proof.

We will first prove that SQuad embeds as a full subcategory of SCM.
We claim that a SQuad C yields a SCM:

Co x Cp LI pab g ab v, o 0, ¢

Moreover,

()
(e, [, ") = w({e} @ {Ic, "]}) = w({c} ®0) = 0.

DJ
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Proof.

Axioms (1), (4), (5) in Definition 22 follow immediately from the
Definition 15, and axiom (3) is consequence of the following:

(e, + ") =w({c} ® ({} +{c"})) = w({c} ® {¢}) + w{c} ® {c"})

= (c, C,> + (e, C”> = (c, C,> + <C”7 [C,a c]) + (e, C”> by (1)

= (c,d) + (", 0(c,c)) + (¢,c") by axiom (1) in Definition 22

= (¢, )" + (¢,") by axiom (2) in Definition 22.

Conversely, let us see that a SCM satisfying (1) can be obtained from a
SQuad. Indeed, (1) and Definition 22 (4) imply that (-,-) factors
through C$® x C§°. Moreover, by (1), and Definition 22 (1), (2) the
elements of Cy act trivially on the image of (-, -), therefore (-, ) is
bilinear by (3) in Definition 22. So (-, -) factors through C& @ C&® to
give us the required SQuad. Remaining details and a proof of the
reflective part can be read in [3]. O
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Properties of 2-CM

Proposition

Given a SQuad ng ® ng e 9, Gy. Then the homomorphism w is
central.

Proof.
[a, w({y} ® {z})] = w({ow({y} ® {2})} ® {0(a)})
=w({[z,9]} ® {9(a)}) = w(0®{0(a)}) = 0. O

Similar result is also true for SCM.
Proposition
Given a 2-CM G, m2(G,) is abelian.

Proof.

From the result above, and the definition of m2(G), m2(Gy) is central
in (o, in particular it is abelian. 0J

o
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Proposition
Given a 2-CM G, 71(Gy) is abelian.

Proof.

Im O is normal in G since:

A(f%) = (0f)® =27 1(0f)z, f € G1,z € Gy.

Similarly, m (G) makes sense since Im(9 : G2 — G1) is normal in Gy,
hence in particular in Ker(d : G; — Gp). Then,

foOag - f1<9041 = fofi0(ad ar) = f1f20({fo, f1)ad ar)
= f1fod(af° ao>a<<a{0ao> <fo,f1>a£ )
= f1001 - fodag - O((ad*ag)~ <f0,f1>0<o 1) O
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Proposition
Given a 2-CM G, m2(G,) is a mo(Gx)-module.

Proof.

The homotopy group ma(Gx) is a subset of Gg, and 71 (G.) is a subset
of Gg, so we can consider the multiplication « - x = o*. So, the only
thing to check is Im(0 : G1 — Gy) acts trivially on Ker(d : Go — G1).
Let a € Ker(0 : G2 — G1), x = 0f for some f € Gy, then:

a9 = of (f,00) = af (f,1) = of (assuming (f,1) = 1)

= a(0a, f) = a1, f) = a (assuming (1, f) = 1). O
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Coskeletons as a Postnikov decomposition’

e Given any X € sSet, we can have a truncation functor for each

neN
try, : sSet — sSet<,,.

@ Then by Kan extension we have the following functors:
skn

sSet " sSet<,
cosky,
such that sk, - tr,, - cosk,.

@ Now consider,
Sk, := sk, otr, : sSet — sSet,

Cosk,, := cosk, otr, : sSet — sSet.

Then Sk, 1 Cosk,,.
"W. G. Dwyer, D. M. Kan, and J. H. Smith. “An obstruction theory for
simplicial categories”. In: Nederl. Akad. Wetensch. Indag. Math. 48.2 (1986),
pp. 153-161. 1ssNn: 0019-3577.
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o They also satisfy the following properties:
> (Coskn, X))k = sSet(AF, Cosk, X) = sSet(Sk,A*, X).
» If k <n: Sk, AF = AF (Cosk, X )i, = Xy
» Ifk=n+1:
(Cosk, X)py1 = sSet(Sk, A", X) =2 sSet(0A™, X) = 0.
o Cosk, is a right adjoint, so it preserves fibrant object. So, when X
is fibrant, then so is C'osk, X and its homotopy groups are trivial
in dimension > n.

@ Hence, the sequence:
X = hin( — Coskn41(X) = Cosky(X) = Coskp_1(X) — -+ — %)
is up to homotopy, a Postnikov decomposition of X.
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Definition 23

A map i : A — B is said to have the left lifting property (LLP)? with
respect to another map p: X — Y and p is said to have the right
lifting property (RLP) with respect to 4 if a lift h : B — X exists for

any of the commutative diagram of the following form:

A%X

2
zl h . lp

-

B,y

*W. G. Dwyer and J. Spalinski. “Homotopy theories and model
categories”. In: Handbook of algebraic topology. North-Holland, Amsterdam,
1995, pp. 73-126. DOI: 10.1016/B978-044481779-2/50003-1. URL:
https://doi.org/10.1016/B978-044481779-2/50003-1.

Fact 24

The fibrations (in sense of Model category) are the maps which have
the RLP with respect to acyclic cofibrations (i.e., cofibrations that are
also w.e.).

v
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Definition 25
An object A is called fibrant, if A — 0 is a fibration. J
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