# 2-type of the K-theory of a Waldhausen category 

Milind V. Gunjal

Department of Mathematics
Florida State University

December $9^{\text {th }}, 2021$


## Doctoral Committee

- Dr. Ettore Aldrovandi

Advisor

- Dr. Piers Rawling

University Representative

- Dr. Paolo Aluffi

Committee Member

- Dr. Mark van Hoeij

Committee Member

- Dr. Kyounghee Kim

Committee Member

## Outline

(1) Waldhausen categories
(2) K-theory of Waldhausen categories
(3) Examples of cells
(4) Motivation
(5) Approximation of a sSet by $n$-types
(6) Models for $n$-types: $n=0,1,2$
(7) A diagram of low types

8 SM 2-Cat structure on a 2 -CM

## Waldhausen categories

## Definition 1

Let $\mathcal{C}$ be a category equipped with a subcategory $c o=c o(\mathcal{C})$ of morphisms in the category $\mathcal{C}$ called cofibrations ${ }^{a}$ (indicated with feathered arrows $\mapsto$ ). The pair ( $\mathcal{C}, c o)$ is called a category with cofibrations if the following axioms are satisfied:
(1) Every isomorphism in $\mathcal{C}$ is a cofibration.
(2) There is a zero object, 0 in $\mathcal{C}$, and the unique morphism $0 \hookrightarrow A$ in $\mathcal{C}$ is a cofibration for every $A \in O b(\mathcal{C})$. (i.e., every object of $\mathcal{C}$ is cofibrant).
(3) If $A \hookrightarrow B$ is a cofibration and $A \rightarrow C$ is any morphism in $\mathcal{C}$, then the pushout $B \bigcup_{A} C$ of these two maps exists in $\mathcal{C}$ and $C \longmapsto B \bigcup_{A} C$ is a cofibration.


[^0]
## Remarks

(1) Coproduct $B \amalg C$ of any two objects $B, C \in O b(\mathcal{C})$ exists. Since, $B \amalg C=B \bigcup_{0} C$.
(2) Every cofibration $A \mapsto B$ in $\mathcal{C}$ has a cokernel $B / A$.

Since, $B / A=B \bigcup_{A} 0$.
(3) We refer to $A \hookrightarrow B \rightarrow B / A$ as a cofibration sequence in $\mathcal{C}$.

## Example 2

(1) The category $\mathbf{R}$-Mod, for any ring $R$ is a category with cofibrations:
The cofibrations are the injective maps.
(2) In fact, any exact category, hence any abelian category is naturally a category with cofibrations:
The cofibrations are the monomorphisms.

## Definition 3

A Waldhausen category $\mathcal{C}$ is a category with cofibrations, together with a family $w(\mathcal{C})$ of morphisms in $\mathcal{C}$ called weak equivalences (abbreviated w.e. and indicated with $\xrightarrow{\sim}$ ) satisfying the following axioms:
(1) Every isomorphism in $\mathcal{C}$ is a w.e.
(2) Weak equivalences are closed under composition. (So we may regard $w(\mathcal{C})$ as a subcategory of $\mathfrak{C}$.)
(3) Gluing axiom:


The induced map $B \bigcup_{A} C \rightarrow B^{\prime} \bigcup_{A^{\prime}} C^{\prime}$ is also a weak equivalence.

## Definition 4

A Waldhausen category $\mathcal{C}$ is called saturated if whenever $f, g$ are composable maps, and $f g$ is a w.e., $f$ is a w.e. if and only if $g$ is.

## Remark

We will consider only saturated Waldhausen categories, and hence we will just call them Waldhausen categories by abuse of language.

## Example 5

The category of bounded above ( $k \geq 0$ ) chain complexes over a ring $R$, $\mathbf{C h}_{R}$ is a Waldhausen category by defining a map $f: M \rightarrow N \in \operatorname{Hom}_{C h_{R}}(M, N)$ is

- a w.e. if $f$ induces isomorphism on homology groups.
- a cofibration if for each $k \geq 0$ the map $f_{k}: M_{k} \rightarrow N_{k}$ is a monomorphism with a projective module as its cokernel.


## Example 6

Any category with cofibrations ( $\mathcal{C}, c o$ ) may be considered as a Waldhausen category in which the category of weak equivalences is the category iso $(\mathcal{C})$ of all isomorphisms.

## Definition 7

A functor between Waldhausen categories is exact if it is pointed ( 0 $\mapsto 0)$, takes cofibrations to cofibrations, and w.e. to w.e., and preserves the pushout:


## K-theory of Waldhausen categories

## Definition 8

Let $\mathcal{C}$ be a Waldhausen category. $K_{0}(\mathcal{C})^{a}$ is the abelian group presented as having one generator $[C]$ for each $C \in O b(\mathcal{C})$, subject to following relations:
(1) $[C]=\left[C^{\prime}\right]$ if there exists a w.e. $C \xrightarrow{\sim} C^{\prime}$.
(2) $[C]=[B]+[C / B]$ for every cofibration sequence $B \rightarrow C \rightarrow C / B$.

[^1]
## Remarks

These relations imply:
(1) $[0]=0$.
(2) $[B \amalg C]=[B]+[C]$.
(3) Since pushouts preserve cokernels, $\left[B \bigcup_{A} C\right]=[B]+[C]-[A]$.
(1) $[B / A]=[B]-[A]$ since, $B / A=B \bigcup_{A} 0$.

- We will now see $S_{\bullet}$-construction. $S$ stands for Segal as in Graeme B. Segal. Segal gave a similar construction for additive categories but it was reinvented by Waldhausen for Waldhausen categories.
- For any category $\mathcal{C}$, the arrow category ${ }^{1} \operatorname{Ar} \mathcal{C}$ is the category with
 $g: c \rightarrow d$ is a commutative diagram in $\mathcal{C}$

- Consider $[n]=\{0 \leftarrow 1 \leftarrow \cdots \leftarrow n\}$ as a category, and the arrow category $\operatorname{Ar}\left([n]^{o p}\right)$.
- For e.g. in $\operatorname{Ar}\left([11]^{o p}\right)$ there is a unique morphism from the object $(2 \rightarrow 4)$ to $(3 \rightarrow 7)$ and no morphism in the other way.

[^2]
## Definition 9

Let $\mathcal{C}$ be a category with cofibrations. Then $S \mathcal{C}=\left\{[n] \mapsto S_{n} \mathcal{C}\right\}$ is the simplicial category which in degree $n$ is the category $S_{n} \mathrm{C}$ of functors $C: \operatorname{Ar}\left([n]^{o p}\right) \rightarrow \mathcal{C}$ satisfying the following properties:
(1) For all $j \geq 0, C(j=j)=0$.
(2) If $i \leq j \leq k$, then $C(i \leq j) \mapsto C(i \leq k)$ is a cofibration, and

$$
\begin{gathered}
C(i \leq j) \longrightarrow C(i \leq k) \\
\downarrow \\
C(j=j) \longrightarrow C(j \leq k)
\end{gathered}
$$

is a pushout.

- From the $S_{\bullet}$-construction, we can have for following:

$$
S_{\bullet} w \mathbb{C}=\left\{[n] \mapsto O b\left(S_{n} w \mathbb{C}\right)\right\} \in \text { sSet. }
$$

So, we can have the loop space of the geometric realization:

$$
K(\mathbb{C}):=\Omega|S \bullet w \mathbb{C}| .
$$

- Hence, we have:

$$
\pi_{i}(K(\mathcal{C}))=\pi_{i}\left(\Omega\left|S_{\bullet} w \mathcal{C}\right|\right) \cong \pi_{i+1}\left(\left|S_{\bullet} w \mathcal{C}\right|\right) \stackrel{\text { def }}{=} \pi_{i+1}\left(S_{\bullet} w \mathcal{C}\right)
$$

- We define a construction for a Waldhausen category $\mathcal{C}$, denoted by T. C .

Where, $T_{n} \mathcal{C}$ is generated by $N_{p}\left(S_{q} w \mathcal{C}\right), p+q-1=n$.
Here, $N$ stands for the nerve of the category, and $w$ stands for considering weak equivalences.

- So, $N_{p}\left(S_{q} w \mathbb{C}\right) \in \mathbf{s}^{2}$ Set. Up on taking its anti-diagonal (via a w.e. called Artin-Mazur map) becomes a sSet.

$$
N_{p} S_{q} w \mathrm{C} \longmapsto d\left(N_{p} S_{q} w \mathrm{C}\right) \stackrel{\text { Artin-Mazur }}{\longrightarrow} T\left(N_{p} S_{q} w \mathrm{C}\right)
$$

- Since it is known that $\operatorname{Ob}\left(S_{\bullet} w \mathbb{C}\right) \xrightarrow{\sim} d\left(N_{p}\left(S_{q} w \mathbb{C}\right)\right)$, the two simplicial sets $O b\left(S_{\bullet} w \mathcal{C}\right)$ and $T_{\bullet} \mathrm{C}$ are weakly equivalent, so they have same homotopy groups.


## Examples of cells

## Example 10

Given a Waldhausen category $\mathcal{C}$, :
$T_{0}(\mathrm{C})^{a}$ consists of:

## A

Figure 1: $N_{0}\left(S_{1} w \mathrm{C}\right)$
Similarly, for the 1-type:
$T_{1}(\mathrm{C})$ consists of:

$$
A_{0} \xrightarrow{\sim} A_{1}
$$

Figure 2: $N_{1}\left(S_{1} w \mathrm{C}\right)$


Figure 3: $N_{0}\left(S_{2} w \mathrm{C}\right)$
${ }^{a}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

## Example 11

Again, similarly, for the 2-type:
$T_{2}(\mathrm{C})$ consists of:


Figure 4: $N_{2}\left(S_{1} w \mathrm{C}\right)$


Figure 5: $N_{1}\left(S_{2} w \mathrm{C}\right)$

Example 11


## Motivation

## Fact 12

- Given a Waldhausen category $\mathcal{C}$, the simplicial set above is a zero-level of the spectrum $K(\mathcal{C})$. So, we get the following induced maps:

$$
\begin{aligned}
& \mathcal{C} \times \mathcal{D} \longrightarrow \text { biexact } \mathcal{E} \\
& K(\mathcal{C}) \wedge K(\mathcal{D}) \xrightarrow[\downarrow]{\downarrow} K(\mathcal{E}) \\
& \pi_{i}(K(\mathcal{C})) \times \pi_{j}(K(\mathcal{D})) \xrightarrow{ } \pi_{i+j}(K(\mathcal{E}))
\end{aligned}
$$

## Remark

- We know ${ }^{a}$, for a given biexact functor between Waldhausen categories:

$$
\mathcal{E} \times \mathcal{D} \rightarrow \mathcal{E}
$$

we have the classical homomorphisms:

$$
\begin{aligned}
& K_{0}(\mathcal{C}) \times K_{0}(\mathcal{D}) \rightarrow K_{0}(\mathcal{E}), \\
& K_{0}(\mathcal{C}) \times K_{1}(\mathcal{D}) \rightarrow K_{1}(\mathcal{E}), \\
& K_{1}(\mathcal{C}) \times K_{0}(\mathcal{D}) \rightarrow K_{1}(\mathcal{E}) .
\end{aligned}
$$

- So, extending this to 2-type, we expect to find the induced map:

$$
K_{1}(\mathcal{C}) \times K_{1}(\mathcal{D}) \rightarrow K_{2}(\mathcal{E})
$$

[^3]
## Approximation of a sSet by $n$-types

## Definition 13

$n$-type ${ }^{a}$ is the full subcategory of Top* $/ \cong$ (i.e., pointed topological spaces up to homotopy equivalence) consisting of connected CW-spaces $Y$ with $\pi_{i}(Y)=0$ for $i>n$.
${ }^{a}$ Hans-Joachim Baues. "Combinatorial Homotopy and 4-Dimensional Complexes". In: Walter de Gruyter (1991), pp. 171-177.

## Fact 14

For a connected $C W$-complex $X$, one can construct a sequence of spaces $P_{n} X$ such that $\pi_{i}\left(P_{n} X\right) \cong \pi_{i}(X)$ for $i \leq n$, and $\pi_{i}\left(P_{n} X\right)=0$ for $i>n$, and for $i_{n}: X \rightarrow P_{n} X$, and $j_{n}: P_{n} X \rightarrow P_{n-1} X$ we have $j_{n} \circ i_{n}=i_{n-1}$ for all $n \geq 1$.


Figure 7: Postnikov tower
This commutative diagram is called a Postnikov tower ${ }^{a}$ of $X$, the n-type spaces $P_{n} X$ are called truncations of $X$.
${ }^{a}$ Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002, pp. 10, 354-355.

## Postnikov tower of a sSet

- If $X \in \mathbf{s S e t}, X$ is fibrant, then $P_{n} X=\operatorname{Cosk}_{n}(X)$, the tower of Coskeletons ${ }^{2}$ via Kan extensions.


Figure 8: Fibrant object $X$ in sSet

- $\Lambda_{k}^{m}$ is a horn.
- The lift exists for each $m, k \in \mathbb{N}, k<m$.
- In general, if $X$ is not fibrant, we can use a fibrant replacement $X \rightarrow R X$ where $P_{n}(X)=\operatorname{Cosk}_{n}(R X)$.
- In general, the $\mathrm{S}_{\bullet}$-construction is not fibrant, so we work with a different (algebraic) model.

[^4]
## Models for $n$-types: $n=0,1,2$

We want algebraic model for the types in the Postnikov tower:


- $n=0$ : Group, a fundamental group.
- $n=1: D_{*}^{(1)}(\mathcal{C}): D_{1}^{(1)}(\mathcal{C}) \xrightarrow{\partial} D_{0}^{(1)}(\mathcal{C})$, a SQuad.
- $n=2: D_{*}^{(2)}(\mathcal{C}): D_{2}^{(2)}(\mathcal{C}) \xrightarrow{\partial} D_{1}^{(2)}(\mathcal{C}) \xrightarrow{\partial} D_{0}^{(2)}(\mathcal{C})$, a S2-CM.


## Models for 1-type

- It is known that a stable quadratic module (SQuad) ${ }^{3}$ is 1-type, so we construct a SQuad for the given Waldhausen category $\mathcal{C}$.
- Also, stable crossed modules (SCM) are models of (algebraic) 1-types.
- SQuad embeds as reflective subcategory in SCM.
- A full subcategory $i: \mathcal{C} \rightarrow \mathcal{D}$ is reflective, if the inclusion functor $i$ has a left adjoint.

[^5]A stable quadratic module $C_{*}$ is a commutative diagram of group homomorphisms

such that given $c_{i}, d_{i} \in C_{i}, i=0,1$,
(1) $w\left(\left\{\partial\left(c_{1}\right)\right\} \otimes\left\{\partial\left(d_{1}\right)\right\}\right)=\left[d_{1}, c_{1}\right]=d_{1}^{-1} c_{1}^{-1} d_{1} c_{1}$,
(2) $w\left(\left\{c_{0}\right\} \otimes\left\{d_{0}\right\}+\left\{d_{0}\right\} \otimes\left\{c_{0}\right\}\right)=0$. (The stability condition).

$$
\begin{aligned}
C_{0} & \rightarrow C_{0}^{a b} \\
x & \mapsto\{x\}
\end{aligned}
$$

## Remark

The homotopy groups of $C_{*}$ are:

- $\pi_{0}\left(C_{*}\right)=$ Coker $\partial$,
- $\pi_{1}\left(C_{*}\right)=$ Kerə.


## 1-type of a Waldhausen category

## $U:$ SQuad $\xrightarrow{\text { Forget }}$ Set $\times$ Set

$$
C_{*} \mapsto\left(C_{0}, C_{1}\right) .
$$

The functor $U$ has a left adjoint $F$, and a SQuad $F\left(E_{0}, E_{1}\right)$ is called free stable quadratic module on the sets $E_{0}$ and $E_{1}$.

## Fact 16

Given a Waldhausen category $\mathcal{C}$, we can define a corresponding SQuad $F\left(T_{0}(\mathrm{C}), T_{1}(\mathcal{C})\right)^{a}$, where $T_{0}(\mathcal{C}), T_{1}(\mathcal{C})$ come from example $10,11$.

[^6]
## A diagram of low types

SQuad $\xrightarrow{\text { Reflect }} \mathrm{SCM} \longleftrightarrow \mathrm{S} 2-\mathrm{CM} \longleftrightarrow$ SM 2-cat

# $\downarrow$ Forget $\downarrow$ Forget $\downarrow$ Forget <br> Quad $\longrightarrow \mathrm{CM} \longleftrightarrow 2-\mathrm{CM}$ 

- SQuad: Stable quadratic modules
- Quad: Quadratic modules
- CM: Crossed modules
- SCM: Stable Crossed modules
- 2-CM: 2-Crossed modules
- S2-CM: Stable 2-Crossed modules
- SM 2-Cat: Symmetric monoidal 2-Categories


## Definition 17

A crossed module ${ }^{a} G_{*}$ consists of a $G_{0}$-equivariant group homomorphism, where $G_{0}$ acts on itself by conjugation.

$$
G_{1} \xrightarrow{\partial} G_{0}
$$

where the action of $G_{0}$ on $G_{1}$ satisfies

- $f^{\partial g}=g^{-1} f g$.

[^7]
## Remark

The homotopy groups of the crossed module $G_{*}$ are:

- $\pi_{0}\left(G_{*}\right)=$ Coker $\partial$,
- $\pi_{1}\left(G_{*}\right)=\operatorname{Ker} \partial$.


## Definition 18

A 2-crossed module ${ }^{a} G_{*}$ consists of a complex of $G_{0}$-groups

$$
\begin{aligned}
& G_{1} \times G_{1} \\
& \langle\cdot \cdot,\rangle \downarrow \\
& \quad G_{2} \xrightarrow{\partial} G_{1} \xrightarrow{\partial} G_{0}
\end{aligned}
$$

(so that $\partial \partial=0$ ) and $\partial$ 's are $G_{0}$-equivariant, where $G_{0}$ acts on itself by conjugation, such that $G_{2} \xrightarrow{\partial} G_{1}$ is a crossed module such that

- $\left(\alpha^{f}\right)^{x}=\left(\alpha^{x}\right)^{f^{x}}$ for all $\alpha \in G_{2}, f \in G_{1}, x \in G_{0}$.
- There is a function $\langle\cdot, \cdot\rangle: G_{1} \times G_{1} \rightarrow G_{2}$ called Peiffer lifting satisfying:
(1) $\partial\langle f, g\rangle=f^{-1} g^{-1} f g^{\partial f}$,
(1) $\langle f, g h\rangle=\langle f, h\rangle\langle f, g\rangle^{h^{\partial f}}$,
(2) $\langle\partial \alpha, f\rangle=\alpha^{-1} \alpha^{f}$,
(3) $\langle f, \partial \alpha\rangle=\left(\alpha^{-1}\right)^{f} \alpha^{\partial f}$,
(3) $\langle f g, h\rangle=\langle f, h\rangle^{g}\left\langle g, h^{\partial f}\right\rangle$,
(0) $\langle f, g\rangle^{x}=\left\langle f^{x}, g^{x}\right\rangle$.

For all $x \in G_{0}, f, g, h \in G_{1}, \alpha \in G_{2}$.

[^8]
## Remark

The homotopy groups of a 2 -crossed module $G_{*}$ are:

- $\pi_{0}\left(G_{*}\right)=\operatorname{Coker}\left(\partial: G_{1} \rightarrow G_{0}\right)$,
- $\pi_{1}\left(G_{*}\right)=\operatorname{Ker}\left(\partial: G_{1} \rightarrow G_{0}\right) /\left(\operatorname{Im}\left(\partial: G_{2} \rightarrow G_{1}\right)\right)$,
- $\pi_{2}\left(G_{*}\right)=\operatorname{Ker}\left(\partial: G_{2} \rightarrow G_{1}\right)$.


# SQuad $\xrightarrow{\text { Reflect }} \mathrm{SCM} \longleftrightarrow \mathrm{S} 2-\mathrm{CM} \longleftrightarrow \mathrm{SM} 2$-Cat 



- S2-CM: Stable 2-Crossed modules
- SM 2-Cat: Symmetric monoidal 2-Categories


## Why are we doing this?

- Why stability?: Because of the stability condition, the spectrum remains invariant under suspension, i.e., on taking suspension, the homotopy groups shift to next level without changing anything else.
- Why SM 2-Cat?: Because we know what SM 2-Cats are, whereas it is difficult to deduce the stabilization from 3-types.


## SM 2-Cat structure on a 2-CM

Components of a Symmetric monoidal 2-Category ${ }^{4}$ (SM 2-Cat are):

- A 2-Cat
- Monoidal structure $(\otimes)$ on the 2-Cat
- Braiding $(\beta)$ on the monoidal structure
- Left $\left(\eta_{-\mid--}\right)$and right ( $\left.\eta_{--\mid-}\right)$hexagonators
- Syllepsis ( $\gamma$ ) (Exclusive for 2-Cat)

[^9]- Given a $2-\mathrm{CM} G_{*}$

$$
G_{2} \xrightarrow{\partial} G_{1} \xrightarrow{\partial} G_{0}
$$

We can have a 2 -Cat $\Gamma\left(G_{*}\right)$ :

- $\operatorname{Ob}\left(\Gamma\left(G_{*}\right)\right)=G_{0}$.

$$
x_{0} \in G_{0}
$$

- $1-\operatorname{Mor}\left(\Gamma\left(G_{*}\right)\right)=G_{0} \times G_{1}$.

$$
x_{0} \xrightarrow{f_{0}} x_{1} \text { such that } x_{1}=x_{0} \partial\left(f_{0}\right) .
$$

- $2-\operatorname{Mor}\left(\Gamma\left(G_{*}\right)\right)=G_{0} \times G_{1} \times G_{2}$.


Such that $f_{1}=f_{0} \partial(\alpha)$.

Compositions of 2-cells:


Figure 9: Vertical composition


Figure 10: Horizontal composition

They satisfy certain compatibility conditions.

- Monoidal structure of 2-Crossed modules:


Figure 11: Monoidal structure

The functor $\otimes_{-}: \Gamma\left(G_{*}\right) \times \Gamma\left(G_{*}\right) \rightarrow \Gamma\left(G_{*}\right)$ is in fact a lax functor.


Figure 12: Lax functor

- Braiding:

For every $x_{0} \xrightarrow{f} x_{1}$ and $y_{0} \xrightarrow{g} y_{1}$, we have


- Left $\left(\eta_{x \mid y, z}\right)$ and right $\left(\eta_{x, y \mid z}\right)$ hexagonators:


All these satisfy naturality and certain compatibility conditions.

- Syllepsis

Given any two $x, y \in G_{0}$, we have


- For 1-Cat this 2-cell collapses to 1 .
- They satisfy naturality and certain compatibility conditions.


## References I

[1] Charles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172-174.
[2] Bjørn Ian Dundas, Thomas G. Goodwillie, and Randy McCarthy. The Local Structure of Algebraic K-Theory. Springer-Verlag London, 2013, pp. 24-32.
[3] Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.
[4] Hans-Joachim Baues. "Combinatorial Homotopy and 4-Dimensional Complexes". In: Walter de Gruyter (1991), pp. 171-177.
[5] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002, pp. 10, 354-355.

## References II

[6] W. G. Dwyer, D. M. Kan, and J. H. Smith. "An obstruction theory for simplicial categories". In: Nederl. Akad. Wetensch. Indag. Math. 48.2 (1986), pp. 153-161. ISSN: 0019-3577.
[7] H.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: Forum Mathematicum (1997), pp. 725-733.
[8] Ronald Brown and İlhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: Applied Categorical Structures (2003), p. 193.
[9] Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University Press, 2021, pp. 384-396.

## References III

[10] W. G. Dwyer and J. Spaliński. "Homotopy theories and model categories". In: Handbook of algebraic topology. North-Holland, Amsterdam, 1995, pp. 73-126. DOI: 10.1016/B978-044481779-2/50003-1. URL: https://doi.org/10.1016/B978-044481779-2/50003-1.
[11] Fernando Muro and Andrew Tonks. "On $\mathrm{K}_{1}$ of a Waldhausen category". In: K-theory and Noncommutative Geometry (2006), pp. 92-100.
[12] Hans Joachim Baues. "Homotopy types". In: Handbook of algebraic topology. North-Holland, Amsterdam, 1995, pp. 1-72. DOI: 10.1016/B978-044481779-2/50002-X. URL: https://doi.org/10.1016/B978-044481779-2/50002-X.

## References IV

[13] Friedhelm Waldhausen. "Algebraic $K$-theory of spaces". In: Algebraic and geometric topology (New Brunswick, N.J., 1983). Vol. 1126. Lecture Notes in Math. Springer, Berlin, 1985, pp. 318-419. DOI: 10.1007/BFb0074449. URL: https://doi.org/10.1007/BFb0074449.
[14] Ronald Brown and N. D. Gilbert. "Algebraic models of 3-types and automorphism structures for crossed modules". In: Proc. London Math. Soc. (3) 59.1 (1989), pp. 51-73. ISSN: 0024-6115. DOI: $10.1112 / \mathrm{plms} / \mathrm{s} 3-59.1 .51$. URL: https://doi.org/10.1112/plms/s3-59.1.51.
[15] Z. Arvasi, T. S. Kuzpinari, and E. Ö. Uslu. "Three-crossed modules". In: Homology Homotopy Appl. 11.2 (2009),
pp. 161-187. ISSN: 1532-0073. URL:
http://projecteuclid.org/euclid.hha/1296138516.


## $S_{2} \mathrm{C}$ as a category with cofibrations

- Given a category with cofibrations $\mathcal{C}$, we can define a category called $S_{2} \mathrm{C}^{[2]}$ which has $\left(\mathrm{Ob}\left(S_{2} \mathrm{C}\right)\right)=$ collection of cofibration sequences, morphisms between two objects as follows:

- We can define cofibrations in the category $S_{2}$ C. A map like the one above is a cofibration if the vertical maps are cofibrations and the map from $A_{1} \coprod_{A_{0}} B_{0} \rightarrow B_{1}$ is a cofibration.



## Remark

It can be seen that, with the similar pattern $S_{n} \mathrm{C}$ is a category with cofibrations for every $n \in \mathbb{N}$. Hence, one can consider $S_{\bullet}\left(S_{\bullet} \mathcal{C}\right)$ and keep on doing this. This will give us a spectrum. However, we are not working with this spectrum in this study. We are just considering the first level of this spectrum, i.e., we are not considering the cofibration structure over $S_{n} \mathrm{C}$ for $n \geq 2$.

- Consider

$$
U: \text { SQuad } \xrightarrow{\text { Forget }} \text { Set } \times \text { Set }
$$

$$
C_{*} \mapsto\left(C_{0}, C_{1}\right)
$$

The functor $U$ has a left adjoint $F$, and a SQuad $F\left(E_{0}, E_{1}\right)$ is called free stable quadratic module ${ }^{[3]}$ on the sets $E_{0}$ and $E_{1}$.

- Given a set $E$,
- denote the free generated with basis $E$ by $\langle E\rangle$,
- free abelian group with basis $E$ by $\langle E\rangle^{a b}$,
- free group of nilpotency class 2 with basis $E$ by $\langle E\rangle^{\text {nil }}$ (i.e., the quotient of $\langle E\rangle$ by triple commutators),
- Given an abelian group $A$,
- denote the quotient of $A \otimes A$ by $a \otimes b+b \otimes a, a, b \in A$ by $\hat{\otimes}^{2} A$.
- Given a pair of sets $E_{0}$ and $E_{1}$,
- write $E_{0} \cup \partial E_{1}$ for the set whose elements are the symbols $e_{0}$ and $\partial e_{1}$ for each $e_{0} \in E_{0}, e_{1} \in E_{1}$.
Then we can define the free SQuad by considering:
- $F\left(E_{0}, E_{1}\right)_{0}=\left\langle E_{0} \cup \partial E_{1}\right\rangle^{\text {nil }}$,
- $F\left(E_{0}, E_{1}\right)_{1}=\hat{\otimes}^{2}\langle E\rangle^{a b} \times\left\langle E_{0} \times E_{1}\right\rangle^{a b} \times\left\langle E_{1}\right\rangle^{n i l}$.


## Simplicial Set

A simplicial set $X \in \mathbf{s S e t}$ is

- for each $n \in \mathbb{N}$ a set $X_{n} \in \operatorname{Set}$ (the set of $n$-simplices),
- for each injective map $\partial_{i}:[n-1] \rightarrow[n]$ of totally ordered sets $([n]:=(0<1<\cdots<n)$,
- a function $d_{i}: X_{n} \rightarrow X_{n-1}$ (the $i^{\text {th }}$ face map on $n$-simplices) $(n>0$ and $0 \leq i \leq n)$,
- for each surjective map $\sigma_{i}:[n+1] \rightarrow[n]$ of totally ordered sets,
- a function $s_{i}: X_{n} \rightarrow X_{n+1}$ (the $i^{\text {th }}$ degeneracy map on $n$-simplices) ( $n \geq 0$ and $0 \leq i \leq n$ ),
- such that these functions satisfy the simplicial identities:

$$
\begin{gathered}
d_{i} d_{j}=d_{j-1} d_{i} \text { for } i<j \\
d_{i} s_{j}= \begin{cases}s_{j-1} d_{i}, & \text { when } i<j, \\
1, & \text { when } i=j, j+1, \\
s_{j} d_{i-1}, & \text { when } i>j+1\end{cases} \\
s_{i} s_{j}=s_{j+1} s_{i} \text { when } i \leq j
\end{gathered}
$$

## Nerve of a category

Nerve of a small category $\mathcal{C}$ is a simplicial complex $N_{\bullet}(\mathcal{C})$.

- $N_{0}(\mathcal{C})=0$-cells $=O b(\mathcal{C}):$

$$
\bullet A
$$

- $N_{1}(\mathcal{C})=1$-cells $=$ Morphisms of $\mathcal{C}:$

$$
A_{1} \xrightarrow{f} A_{2}
$$

- $N_{2}(\mathrm{C})=2$-cells $=$ A pair of composable morphisms in C :

i.e., generated from $A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3}$.
- $N_{3}(\mathrm{C})=3$-cells $=$ A triplet of composable morphisms in C :

i.e., generated from $A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3} \xrightarrow{f_{3}} A_{4}$.
- and so on.
- $d_{i}: N_{k}(\mathcal{C}) \rightarrow N_{k-1}(\mathcal{C}):$

$$
\begin{gathered}
\left(A_{1} \rightarrow \cdots \rightarrow A_{i-1} \xrightarrow{f_{i-1}} A_{i} \xrightarrow{f_{i}} A_{i+1} \rightarrow \cdots \rightarrow A_{k}\right) \\
\downarrow \\
\left(A_{1} \rightarrow \cdots A_{i-1} \xrightarrow{f_{i} \circ f_{i-1}} A_{i+1} \rightarrow \cdots A_{k}\right)
\end{gathered}
$$

- $s_{i}: N_{k}(\mathcal{C}) \rightarrow N_{k+1}(\mathcal{C}):$

$$
\left(A_{1} \rightarrow \cdots \rightarrow A_{i} \rightarrow \cdots \rightarrow A_{k}\right) \mapsto\left(A_{1} \rightarrow \cdots A_{i} \xrightarrow{\mathrm{id}} A_{i} \rightarrow \cdots A_{k}\right) .
$$

## Definition of a Quad ${ }^{5}$

## Definition 19

A pre-crossed module $G_{*}$ is a equivariant $G_{0}$-group homomorphism $\partial: G_{1} \rightarrow G_{0}$, where $G_{0}$ acts on itself by conjugation.

[^10]
## Definition 20

A quadratic module $(w, \delta, \partial)$ is a complex of $G_{0 \text {-groups }}$

$$
\left(G_{1}^{\mathrm{cr}}\right)^{\mathrm{ab}} \times\left(G_{1}^{\mathrm{cr}}\right)^{\mathrm{ab}}
$$


where, $G_{1}^{\text {cr }}$ is a group such that the pre-cross module $\partial: G_{1} \rightarrow G_{0}$ becomes a crossed module $\partial: G_{1}^{\text {cr }} \rightarrow G_{0}$. such that

- $\partial: G_{1} \rightarrow G_{0}$ is a $\operatorname{nil}(2)$-module.
- $\partial \delta=0, \delta w=\mathrm{w}=$ Peiffer commutator map:

$$
\mathrm{w}(x \otimes y)=-x-y+x+y^{\partial x}
$$

- All homomorphisms are equivariant with respect to the action of $G_{0}$
- $f^{\partial x}=f+w(\{\partial f\} \otimes\{x\}+\{x\}+\{\partial f\})$ for all $f \in G_{2}, x \in G_{1}$.
- $w(\{\partial a\} \otimes\{\partial b\})=[a, b]=-a-b+a+b$.


## Remark

- Putting $G_{0}=0$ in the definition above gives us the Definition 15 .
- Homotopy groups of the quadratic module $\sigma=(w, \delta, \partial)$ can be defined as:

$$
\begin{aligned}
& \pi_{1}(\sigma)=\operatorname{Coker}(\partial) \\
& \pi_{2}(\sigma)=\operatorname{Ker}(\partial) / \operatorname{Im}(\delta) \\
& \pi_{3}(\sigma)=\operatorname{Ker}(\delta)
\end{aligned}
$$

- From Definition 15, we can conclude that $C_{0}$ and $C_{1}$ are groups of nilpotency class 2.

Given $x, y, z \in C_{0}$, we have:

$$
[x,[y, z]]=\partial w(\{[y, z]\} \otimes\{x\})=\partial w(0 \otimes\{x\})=0
$$

Similarly, given $f, g, h \in C_{1}$ we have:

$$
[f,[g, h]]=w(\{\partial([g, h])\} \otimes\{\partial(f)\})=w(\{[\partial(g), \partial(h)]\} \otimes\{\partial(f)\})=w(0 \otimes\{\partial(f)\})=0 .
$$

## Detailed SQuad structure for Fact $16^{6}$

- The generators for dimension 0 are:
- $[A]$ for any $A \in O b(\mathcal{C})$.
- The generators for dimension 1 are:
- $\left[A_{0} \xrightarrow{\sim} A_{1}\right]$ for any w.e.
- $[A \hookrightarrow B \rightarrow B / A]$ for any cofiber sequence.
- such that the following relations hold (i.e., we define $\partial, w)$ :
- $\partial\left(\left[A_{0} \xrightarrow{\sim} A_{1}\right]\right)=-\left[A_{1}\right]+\left[A_{0}\right]$.
- $\partial([A \hookrightarrow B \rightarrow B / A])=-[B]+[B / A]+[A]$.
- $[0]=0$.
- $[A \xrightarrow{i d} A]=0$.
- $[A \xrightarrow{i d} A \rightarrow 0]=0,[0 \hookrightarrow A \xrightarrow{i d} A]=0$.
- For any composable weak equivalences $A \xrightarrow{\sim} B \xrightarrow{\sim} C$,

$$
[A \xrightarrow{\sim} C]=[B \xrightarrow{\sim} C]+[A \xrightarrow{\sim} B] .
$$

[^11]- For any $A, B \in O b(\mathrm{C})$, define the $w$ as follows:

$$
\begin{gathered}
w([A] \otimes[B]):=\langle[A],[B]\rangle \\
= \\
-\left[B \xrightarrow{i_{2}} A \amalg B \xrightarrow{p_{1}} A\right]+\left[A \xrightarrow{i_{1}} A \amalg B \xrightarrow{p_{2}} B\right] .
\end{gathered}
$$

Here,

$$
A \underset{p_{1}}{\stackrel{i_{1}}{\leftrightarrows}} A \amalg B \underset{p_{2}}{\stackrel{i_{2}}{\leftrightarrows}} B
$$

are natural inclusions and projections of a coproduct in $\mathcal{C}$.

- For any commutative diagram in $\mathcal{C}$ as follows:

we have

$$
\begin{array}{r}
{\left[A_{0} \xrightarrow{\sim} A_{1}\right]+\left[B_{0} / A_{0} \xrightarrow{\sim} B_{1} / A_{1}\right]+\left\langle[A],-\left[B_{1} / A_{1}\right]+\left[B_{0} / A_{0}\right]\right\rangle} \\
= \\
-\left[A_{1} \rightarrow B_{1} \rightarrow B_{1} / A_{1}\right]+\left[B_{0} \xrightarrow{\sim} B_{1}\right]+\left[A_{0} \rightarrow B_{0} \rightarrow B_{0} / A_{0}\right] .
\end{array}
$$

- For any commutative diagram consisting of cofiber sequences in $\mathcal{C}$ as follows:

we have,

$$
\begin{gathered}
{[B \mapsto C \rightarrow C / B]+[A \mapsto B \rightarrow B / A]} \\
=
\end{gathered}
$$

$$
[\mathrm{A} \rightarrow C \rightarrow C / A]+[B / A \mapsto C / A \rightarrow C / B]+\langle[A],-[C / A]+[C / B]+[B / A]\rangle .
$$

## Definition of 2-categories

## Definition 21

A (strict) 2-category $\mathcal{C}$ is comprised of the following:

- 0-Cells (Objects): Denoted by $\mathrm{Ob}(\mathrm{C})$.
- 1-Cells (Morphisms): For $A, B \in O b(\mathcal{C})$, a set $\operatorname{Hom}(A, B)$ of 1 -cells from $A$ to $B$, also known as morphisms. A 1-cell is often written textually as $f: A \rightarrow B$ or graphically as $A \xrightarrow{f} B$.
- 2-Cells: For $A, B \in O b(\mathcal{C}), f, g \in \operatorname{Hom}(A, B)$, a set Face $(f, g)$ of 2-cells from $f$ to $g$. A 2-cell is often written textually as $\alpha: f \Rightarrow g: A \rightarrow B$ or graphically as follows:



## Definition 21

- 1-Identities: For each $A \in O b(\mathcal{C})$, a 1-cell $A \xrightarrow{i d_{A}} A$.
- 1-Composition: For each chain of 1-cells $A \xrightarrow{f} B \xrightarrow{g} C$, a 1-cell $A \xrightarrow{f ; g} C$.
- Vertical 2-Composition: For a chain of 2-cells



## Definition 21

- Horizontal 2-Composition: For each chain of 2-cells

- 1-Identity: Every 1 -cell $A \xrightarrow{f} B$ satisfies $\left(i d_{A} ; f\right)=f=\left(f ; i d_{B}\right)$.
- 1-Associativity: Every chain of 1-cells $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ satisfies $(f ; g) ; h=f ;(g ; h)$.
- Vertical 2-Identity: Every 2-cell $\alpha: f \Rightarrow g: A \rightarrow B$ satisfies $i d_{f} ; \alpha=\alpha=\alpha ; i d_{g}$.


## Definition 21

- Vertical 2-Associativity: Every chain of 2-cells

- Horizontal 2-Identity: Every 2-cell $\alpha: f \Rightarrow g: A \rightarrow B$ satisfies $i d_{i d_{A}} * \alpha=\alpha=\alpha * i d_{i d_{B}}$.
- 2-Identity: Every sequence of 1-cells $A \xrightarrow{f} B \xrightarrow{g} C$ satisfies $i d_{f} * i d_{g}=i d_{f ; g}$.
- Horizontal 2-Associativity: Every chain of 2-cells



## Definition 21

- 2-Interchange: Every clover of 2-cells

$(\alpha ; \beta) *\left(\alpha^{\prime} ; \beta^{\prime}\right)=\left(\alpha * \alpha^{\prime}\right) ;\left(\beta * \beta^{\prime}\right)$.


## SQuad embeds as a reflective subcategory of SCM

## Definition 22

A stable crossed module $(\mathrm{SCM})^{a} G_{*}$ is a crossed module $\partial: G_{1} \rightarrow G_{0}$ together with a map

$$
\langle\cdot, \cdot\rangle: G_{0} \times G_{0} \rightarrow G_{1}
$$

satisfying the following for any $f, g \in G_{1}, x, y, z \in G_{0}$ :
(1) $\partial\langle x, y\rangle=[y, x]$,
(2) $f^{x}=f+\langle x, \partial(f)\rangle$,
(3) $\langle x, y+z\rangle=\langle x, y\rangle^{z}+\langle x, z\rangle$,
(1) $\langle x, y\rangle+\langle y, x\rangle=0$.

[^12]5 In SCM, the condition in the definition of crossed modules is now equivalent to $\langle\partial(f), \partial(g)\rangle=[g, f]$.

## Proposition

The category SQuad is a full subcategory of the category SCM given by those objects

$$
C_{0} \times C_{0} \xrightarrow{\langle\cdot, \cdot\rangle} C_{1} \xrightarrow{\partial} C_{0}
$$

which satisfy

$$
\begin{equation*}
\left\langle c,\left[c^{\prime}, c^{\prime \prime}\right]\right\rangle=0, \text { for each } c, c^{\prime}, c^{\prime \prime} \in C_{0} . \tag{1}
\end{equation*}
$$

## Proof.

We will first prove that SQuad embeds as a full subcategory of SCM. We claim that a SQuad $C_{*}$ yields a SCM:

Moreover,


$$
\left\langle c,\left[c^{\prime}, c^{\prime \prime}\right]\right\rangle=w\left(\{c\} \otimes\left\{\left[c^{\prime}, c^{\prime \prime}\right]\right\}\right)=w(\{c\} \otimes 0)=0
$$

## Proof.

Axioms (1), (4), (5) in Definition 22 follow immediately from the Definition 15, and axiom (3) is consequence of the following:
$\left\langle c, c^{\prime}+c^{\prime \prime}\right\rangle=w\left(\{c\} \otimes\left(\left\{c^{\prime}\right\}+\left\{c^{\prime \prime}\right\}\right)\right)=w\left(\{c\} \otimes\left\{c^{\prime}\right\}\right)+w\left(\{c\} \otimes\left\{c^{\prime \prime}\right\}\right)$
$=\left\langle c, c^{\prime}\right\rangle+\left\langle c, c^{\prime \prime}\right\rangle=\left\langle c, c^{\prime}\right\rangle+\left\langle c^{\prime \prime},\left[c^{\prime}, c\right]\right\rangle+\left\langle c, c^{\prime \prime}\right\rangle$ by (1)
$=\left\langle c, c^{\prime}\right\rangle+\left\langle c^{\prime \prime}, \partial\left\langle c^{\prime}, c\right\rangle\right\rangle+\left\langle c, c^{\prime \prime}\right\rangle$ by axiom (1) in Definition 22
$=\left\langle c, c^{\prime}\right\rangle^{c^{\prime \prime}}+\left\langle c, c^{\prime \prime}\right\rangle$ by axiom (2) in Definition 22.
Conversely, let us see that a SCM satisfying (1) can be obtained from a SQuad. Indeed, (1) and Definition 22 (4) imply that $\langle\cdot, \cdot\rangle$ factors through $C_{0}^{a b} \times C_{0}^{a b}$. Moreover, by (1), and Definition 22 (1), (2) the elements of $C_{0}$ act trivially on the image of $\langle\cdot, \cdot\rangle$, therefore $\langle\cdot, \cdot\rangle$ is bilinear by (3) in Definition 22. So $\langle\cdot, \cdot\rangle$ factors through $C_{0}^{a b} \otimes C_{0}^{a b}$ to give us the required SQuad. Remaining details and a proof of the reflective part can be read in [3].

## Properties of 2-CM

## Proposition

Given a SQuad $G_{0}^{a b} \otimes G_{0}^{a b} \xrightarrow{w} G_{1} \xrightarrow{\partial} G_{0}$. Then the homomorphism $w$ is central.

Proof.
$[a, w(\{y\} \otimes\{z\})]=w(\{\partial w(\{y\} \otimes\{z\})\} \otimes\{\partial(a)\})$
$=w(\{[z, y]\} \otimes\{\partial(a)\})=w(0 \otimes\{\partial(a)\})=0$.
Similar result is also true for SCM.

## Proposition

Given a 2 -CM $G_{*}, \pi_{2}\left(G_{*}\right)$ is abelian.

## Proof.

From the result above, and the definition of $\pi_{2}\left(G_{*}\right), \pi_{2}\left(G_{*}\right)$ is central in $G_{2}$, in particular it is abelian.

## Proposition

Given a 2 -CM $G_{*}, \pi_{1}\left(G_{*}\right)$ is abelian.

## Proof.

$\operatorname{Im} \partial$ is normal in $G_{0}$ since:

$$
\partial\left(f^{x}\right)=(\partial f)^{x}=x^{-1}(\partial f) x, f \in G_{1}, x \in G_{0} .
$$

Similarly, $\pi_{1}\left(G_{*}\right)$ makes sense since $\operatorname{Im}\left(\partial: G_{2} \rightarrow G_{1}\right)$ is normal in $G_{1}$, hence in particular in $\operatorname{Ker}\left(\partial: G_{1} \rightarrow G_{0}\right)$. Then,
$f_{0} \partial \alpha_{0} \cdot f_{1} \partial \alpha_{1}=f_{0} f_{1} \partial\left(\alpha_{0}^{f_{1}} \alpha_{1}\right)=f_{1} f_{2} \partial\left(\left\langle f_{0}, f_{1}\right\rangle \alpha_{0}^{f_{1}} \alpha_{1}\right)$
$=f_{1} f_{0} \partial\left(\alpha_{1}^{f_{0}} \alpha_{0}\right) \partial\left(\left(\alpha_{1}^{f_{0}} \alpha_{0}\right)^{-1}\left\langle f_{0}, f_{1}\right\rangle \alpha_{0}^{f_{1}} \alpha_{1}\right)$
$=f_{1} \partial \alpha_{1} \cdot f_{0} \partial \alpha_{0} \cdot \partial\left(\left(\alpha_{1}^{f_{0}} \alpha_{0}\right)^{-1}\left\langle f_{0}, f_{1}\right\rangle \alpha_{0}^{f_{1}} \alpha_{1}\right)$

## Proposition

Given a 2 -CM $G_{*}, \pi_{2}\left(G_{*}\right)$ is a $\pi_{0}\left(G_{*}\right)$-module.

## Proof.

The homotopy group $\pi_{2}\left(G_{*}\right)$ is a subset of $G_{2}$, and $\pi_{1}\left(G_{*}\right)$ is a subset of $G_{0}$, so we can consider the multiplication $\alpha \cdot x=\alpha^{x}$. So, the only thing to check is $\operatorname{Im}\left(\partial: G_{1} \rightarrow G_{0}\right)$ acts trivially on $\operatorname{Ker}\left(\partial: G_{2} \rightarrow G_{1}\right)$.
Let $\alpha \in \operatorname{Ker}\left(\partial: G_{2} \rightarrow G_{1}\right), x=\partial f$ for some $f \in G_{1}$, then:
$\alpha^{\partial f}=\alpha^{f}\langle f, \partial \alpha\rangle=\alpha^{f}\langle f, 1\rangle=\alpha^{f}$ (assuming $\langle f, 1\rangle=1$ )
$=\alpha\langle\partial \alpha, f\rangle=\alpha\langle 1, f\rangle=\alpha$ (assuming $\langle 1, f\rangle=1$ ).

## Coskeletons as a Postnikov decomposition ${ }^{7}$

- Given any $X \in$ sSet, we can have a truncation functor for each $n \in \mathbb{N}$

$$
t r_{n}: \text { sSet } \rightarrow \text { sSet }_{\leq n}
$$

- Then by Kan extension we have the following functors:

$$
\text { sSet } \underset{\underset{\cos k_{n}}{\stackrel{s k_{n}}{\leftrightarrows}}}{\stackrel{t_{n}}{\longleftrightarrow}} \text { sSet }_{\leq n}
$$

such that $s k_{n} \dashv t r_{n} \dashv \cos k_{n}$.

- Now consider,

$$
\begin{aligned}
& S k_{n}:=s k_{n} \circ t r_{n}: \mathbf{s S e t} \rightarrow \text { sSet }, \\
& \operatorname{Cosk}_{n}:=\operatorname{cosk}_{n} \circ t r_{n}: \mathbf{s S e t} \rightarrow \mathbf{s S e t} .
\end{aligned}
$$

Then $S k_{n} \dashv \operatorname{Cosk}_{n}$.

[^13]- They also satisfy the following properties:
- $\left(\operatorname{Cosk}_{n} X\right)_{k} \cong \operatorname{set}\left(\Delta^{k}, \operatorname{Cosk}_{n} X\right) \cong \operatorname{set}\left(\operatorname{Sk}_{n} \Delta^{k}, X\right)$.
- If $k \leq n: S k_{n} \Delta^{k}=\Delta^{k},\left(\operatorname{Cosk}_{n} X\right)_{k}=X_{k}$.
- If $k=n+1$ :

$$
\left(\operatorname{Cosk}_{n} X\right)_{n+1} \cong \operatorname{sSet}\left(S k_{n} \Delta^{n+1}, X\right) \cong \operatorname{set}\left(\partial \Delta^{n+1}, X\right)=0 .
$$

- $\operatorname{Cosk}_{n}$ is a right adjoint, so it preserves fibrant object. So, when $X$ is fibrant, then so is $\operatorname{Cos}_{n} X$ and its homotopy groups are trivial in dimension $\geq n$.
- Hence, the sequence: $\mathrm{X}=\lim _{\leftarrow}\left(\cdots \rightarrow \operatorname{Cosk}_{n+1}(X) \rightarrow \operatorname{Cosk}_{n}(X) \rightarrow \operatorname{Cosk}_{n-1}(X) \rightarrow \cdots \rightarrow *\right)$ is up to homotopy, a Postnikov decomposition of $X$.


## Definition 23

A map $i: A \rightarrow B$ is said to have the left lifting property (LLP) ${ }^{a}$ with respect to another map $p: X \rightarrow Y$ and $p$ is said to have the right lifting property (RLP) with respect to $i$ if a lift $h: B \rightarrow X$ exists for any of the commutative diagram of the following form:


[^14]Fact 24
The fibrations (in sense of Model category) are the maps which have the RLP with respect to acyclic cofibrations (i.e., cofibrations that are also w.e.).

## Definition 25

An object $A$ is called fibrant, if $A \rightarrow 0$ is a fibration.


[^0]:    ${ }^{a}$ Charles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172-174.

[^1]:    ${ }^{a}$ Charles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172-174.

[^2]:    ${ }^{1}$ Bjørn Ian Dundas, Thomas G. Goodwillie, and Randy McCarthy. The Local Structure of Algebraic K-Theory. Springer-Verlag London, 2013, pp. 24-32.

[^3]:    ${ }^{a}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^4]:    ${ }^{2}$ W. G. Dwyer, D. M. Kan, and J. H. Smith. "An obstruction theory for simplicial categories". In: Nederl. Akad. Wetensch. Indag. Math. 48.2 (1986), pp. 153-161. ISSN: 0019-3577.

[^5]:    ${ }^{3}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^6]:    ${ }^{a}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^7]:    ${ }^{a}$ H.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: Forum Mathematicum (1997), pp. 725-733.

[^8]:    ${ }^{a}$ Ronald Brown and İlhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: Applied Categorical Structures (2003),

[^9]:    ${ }^{4}$ Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University Press, 2021, pp. 384-396.

[^10]:    ${ }^{5}$ Hans-Joachim Baues. "Combinatorial Homotopy and 4-Dimensional Complexes". In: Walter de Gruyter (1991), pp. 171-177.

[^11]:    ${ }^{6}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^12]:    ${ }^{a}$ Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179-183.

[^13]:    ${ }^{7}$ W. G. Dwyer, D. M. Kan, and J. H. Smith. "An obstruction theory for simplicial categories". In: Nederl. Akad. Wetensch. Indag. Math. 48.2 (1986), pp. 153-161. ISSN: 0019-3577.

[^14]:    ${ }^{a}$ W. G. Dwyer and J. Spaliński. "Homotopy theories and model categories". In: Handbook of algebraic topology. North-Holland, Amsterdam, 1995, pp. 73-126. DOI: 10.1016/B978-044481779-2/50003-1. URL: https://doi.org/10.1016/B978-044481779-2/50003-1.

