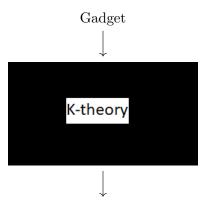
Stabilization of 2-Crossed Modules

Milind Gunjal In collaboration with Dr. Ettore Aldrovandi

Department of Mathematics Florida State University

 $March\ 24^{th}, 2024$

Introduction



Space with interesting homotopy groups

Milind Gunjal March 24th, 2024 2/19

- Examples of such gadgets.
 - ► Category of finitely generated projective *R*-modules. If *X* is the output of its K-theory, then we have:
 - ★ $\pi_1(X) = K_0(R)$.
 - $\star \pi_2(X) = K_1(R) = R^{\times} = \text{Units of } R.$
 - ► A Waldhausen Category.

- Examples of such gadgets.
 - ightharpoonup Category of finitely generated projective R-modules. If X is the output of its K-theory, then we have:
 - ★ $\pi_1(X) = K_0(R)$.
 - $\star \pi_2(X) = K_1(R) = R^{\times} = \text{Units of } R.$
 - A Waldhausen Category.

Definition 1

A Waldhausen category^a C is a category with a zero object, 0 equipped with two classes of morphisms: weak equivalences (WE) and cofibrations (CO) such that it has a notion of taking quotients, and satisfy certain conditions.

^aCharles A. Weibel. *The K-book An Introduction to Algebraic K-theory*. American Mathematical Society, 2010, pp. 172–174.

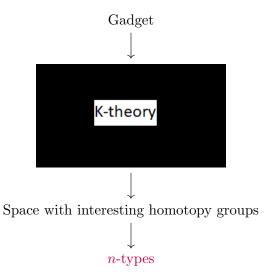
Examples of Waldhausen categories

- **1** The category $\mathbf{R}\text{-}\mathbf{Mod}$, for any ring R.
 - Injective maps (CO).
 - ► Isomorphisms (WE).
- An exact category.
 - Monomorphisms (CO).
 - ► Isomorphisms (WE).

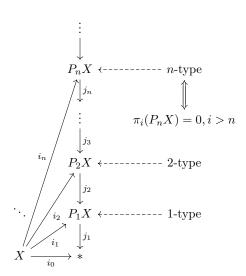
Milind Gunjal March 24th, 2024 4/19

Examples of Waldhausen categories

- **1** The category $\mathbf{R}\text{-}\mathbf{Mod}$, for any ring R.
 - Injective maps (CO).
 - ► Isomorphisms (WE).
- An exact category.
 - Monomorphisms (CO).
 - Isomorphisms (WE).
- **3** Category $\mathcal{R}(X)$ of spaces that retract to X.
 - Serre cofibrations (CO).
 - Maps that induce isomorphisms for chosen homology theory (WE).
- The category of finite sets.
 - Inclusions (CO).
 - Isomorphisms (WE).



n-types



Milind Gunjal March 24th, 2024 6/19

Algebraic model of a 1-type

Groups can be considered as algebraic models for the 1-type.

• If a space X is such that,

$$\pi_i(X) = \begin{cases} G & \text{for } i = 1\\ 0 & \text{for } i \neq 1 \end{cases}$$

- $\bullet \ BG := |N(G \rightrightarrows *)|.$
- $X \simeq BG$.

Algebraic model of a 1-type

Groups can be considered as algebraic models for the 1-type.

• If a space X is such that,

$$\pi_i(X) = \begin{cases} G & \text{for } i = 1\\ 0 & \text{for } i \neq 1 \end{cases}$$

- $BG := |N(G \Rightarrow *)|$.
- $X \simeq BG$.

<i>n</i> -types	Categorical model	Algebraic model
1-type	$\mathfrak{G} = (G \rightrightarrows *)$	G

Theorem 2 (Homotopy Hypothesis (Grothendieck))

By taking classifying spaces and fundamental n-groupoids, there is an equivalence between the theory of weak n-goupoids and that of homotopy n-types.

<i>n</i> -types	Categorical model	Algebraic model	Groups
0-type	0-category	Set	
1-type	1-category	Group	1 group
2-type	2-category	Crossed Module ¹	2 groups
3-type	3-category	2-Crossed Module	3 groups

¹Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: *Advances in Mathematics* 216 (2007), pp. 179–183.

Definition 3

A 2-crossed module^a G_* consists of a complex of G_0 -groups

$$\begin{array}{ccc} G_1 \times G_1 \\ & & & \\ \{\cdot,\cdot\} \bigg| & & \\ G_2 & \xrightarrow{\partial_2} & G_1 & \xrightarrow{\partial_1} & G_0 \end{array}$$

- ∂ 's are G_0 -equivariant.
- $G_2 \xrightarrow{\partial_2} G_1$ is a crossed module.
 - \triangleright ∂_2 is G_1 -equivariant.
 - $f^{\partial_2 g} = g^{-1} f g$ for all $f, g \in G_2$.

Definition 3

A 2-crossed module a G_* consists of a complex of G_0 -groups

$$G_1 \times G_1$$

$$\{\cdot,\cdot\} \downarrow \qquad \qquad \qquad G_2 \xrightarrow{\partial_2} G_1 \xrightarrow{\partial_1} G_0$$

- ∂ 's are G_0 -equivariant.
- $G_2 \xrightarrow{\partial_2} G_1$ is a crossed module.
 - $\triangleright \partial_2$ is G_1 -equivariant.
 - $f^{\partial_2 g} = g^{-1} f g$ for all $f, g \in G_2$.
- $(\alpha^f)^x = (\alpha^x)^{f^x}$ for all $\alpha \in G_2, f \in G_1, x \in G_0$.
- Compatibility conditions.

^aRonald Brown and İlhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: *Applied Categorical Structures* (2003), p. 193.

Milind Gunjal March 24th, 2024 9/19

Remark

The homotopy groups of a 2-crossed module G_* are:

- $\pi_0(G_*) = \operatorname{Coker}(\partial_1 : G_1 \to G_0),$
- $\pi_1(G_*) = \text{Ker}(\partial_1 : G_1 \to G_0) / (\text{Im}(\partial_2 : G_2 \to G_1)),$
- $\pi_2(G_*) = \text{Ker}(\partial_2 : G_2 \to G_1).$

Current work

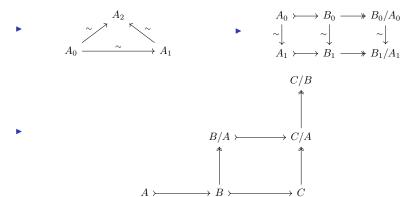
- From a given Waldhausen category, it is known that we can get a group (1-type), and a stable crossed module (2-type)².
- Now, we want to find a 3-type using the same procedure by considering a 2-crossed module G_* .

Milind Gunjal March 24th, 2024 11 / 19

²Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: *Advances in Mathematics* 216 (2007), pp. 179–183.

- The generators for G_0 are:
 - ▶ [A] for any $A \in Ob(\mathcal{C})$.
- The generators for G_1 are:
 - ▶ $[A_0 \xrightarrow{\sim} A_1]$ for any WE.
 - ▶ $[A \rightarrowtail B \twoheadrightarrow B/A]$ for any cofiber sequence.

- The generators for G_0 are:
 - ▶ [A] for any $A \in Ob(\mathcal{C})$.
- The generators for G_1 are:
 - ▶ $[A_0 \xrightarrow{\sim} A_1]$ for any WE.
 - ▶ $[A \rightarrowtail B \twoheadrightarrow B/A]$ for any cofiber sequence.
- The generators for G_2 are:



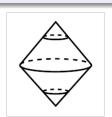
• But this is not stable yet. So we make it stable by realizing the monoidal 2-Cat structure on it.

Stability

• The output of K-theory is in fact a spectrum \mathbb{X} , i.e., a sequence of pointed spaces $\{X_n\}_{n\geq 0}$ with the structure maps $\Sigma X_n \to X_{n+1}$.

Definition 4

For a space X, the suspension ΣX is the quotient of $X \times I$ obtained by collapsing $X \times \{0\}$ to one point and $X \times \{1\}$ to another point. $(\Sigma X = S^1 \wedge X)$.



Example: $\Sigma S^n = S^{n+1}$

Milind Gunjal March 24th, 2024 13 / 19

Theorem 5 (Freudenthal Suspension Theorem)

For a spectrum $\mathbb{X} = \{X_n\}_{n\geq 0}$, the sequence

$$\pi_i(X_n) \to \pi_{i+1}(X_{n+1}) \to \pi_{i+2}(X_{n+2}) \to \cdots$$

eventually stabilizes.

Theorem 5 (Freudenthal Suspension Theorem)

For a spectrum $\mathbb{X} = \{X_n\}_{n \geq 0}$, the sequence

$$\pi_i(X_n) \to \pi_{i+1}(X_{n+1}) \to \pi_{i+2}(X_{n+2}) \to \cdots$$

eventually stabilizes.

Stable Homotopy Group

The i^{th} stable homotopy group of X is:

$$\pi_i^s(\mathbb{X}) = \lim_{\overrightarrow{k}} \pi_{i+k}(X_k) \cong \pi_{i+N}(X_N), \ N \gg 0.$$

Theorem 6 (The Stable Homotopy Hypothesis)

^a Symmetric monoidal structure corresponds to topological stability.

^aNiles Johnson Nick Gurski and Angélica M. Osorno. "The 2-dimensional stable homotopy hypothesis". In: *Journal of Pure and Applied Algebra, Volume 223, Issue 10, 2019* (2019), pp. 4348–4383.

Milind Gunjal March 24th, 2024 15 / 19

SM 2-Cat structure on a 2-CM

• Given a 2-CM G_*

$$G_2 \xrightarrow{\partial} G_1 \xrightarrow{\partial} G_0$$

• $Ob(\Gamma(G_*)) = G_0$.

$$x_0 \in G_0$$
.

• 1-Mor($\Gamma(G_*)$) = $G_0 \rtimes G_1$.

$$x_0 \xrightarrow{f_0} x_1$$
 such that $x_1 = x_0 \cdot \partial(f_0)$.

SM 2-Cat structure on a 2-CM

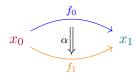
• Given a 2-CM G_*

$$G_2 \xrightarrow{\partial} G_1 \xrightarrow{\partial} G_0$$

• $Ob(\Gamma(G_*)) = G_0$.

$$x_0 \in G_0$$
.

- 1-Mor($\Gamma(G_*)$) = $G_0 \times G_1$. $x_0 \xrightarrow{f_0} x_1$ such that $x_1 = x_0 \cdot \partial(f_0)$.
- 2-Mor($\Gamma(G_*)$) = $G_0 \rtimes G_1 \rtimes G_2$.



Such that $f_1 = f_0 \cdot \partial(\alpha)$.

Figure 1: Vertical composition

Figure 1: Vertical composition

Figure 2: Horizontal composition

They satisfy certain compatibility conditions.

Figure 1: Vertical composition

Figure 2: Horizontal composition

They satisfy certain compatibility conditions.

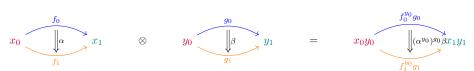


Figure 3: Monoidal structure

Components of a Symmetric Monoidal 2-Category³ (SM 2-Cat) are:

- A 2-Cat.
- Monoidal structure (\otimes) on the 2-Cat.

³Niles Johnson and Donald Yau. *2-Dimensional Categories*. Oxford University Press, 2021, pp. 384–396.

Components of a Symmetric Monoidal 2-Category³ (SM 2-Cat) are:

- A 2-Cat.
- Monoidal structure (\otimes) on the 2-Cat.
- Braiding (β) on the monoidal structure.
- Left $(\eta_{-|-})$ and right $(\eta_{--|-})$ hexagonators.
- Syllepsis (γ) .
 - Symmetry axiom.

• Pull back the symmetric structure to get a stable 2-CM.

Milind Gunjal March 24th, 2024 18 / 19

³Niles Johnson and Donald Yau. *2-Dimensional Categories*. Oxford University Press, 2021, pp. 384–396.

Thank You!

References I

- [1] Charles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172–174.
- [2] Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: Advances in Mathematics 216 (2007), pp. 179–183.
- [3] Ronald Brown and İlhan İçen. "Homotopies and Automorphisms of Crossed Modules of Groupoids". In: *Applied Categorical Structures* (2003), p. 193.
- [4] Niles Johnson Nick Gurski and Angélica M. Osorno. "The 2-dimensional stable homotopy hypothesis". In: *Journal of Pure and Applied Algebra, Volume 223, Issue 10, 2019* (2019), pp. 4348–4383.
- [5] Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University Press, 2021, pp. 384–396.

Milind Gunjal March 24th, 2024 1/22

References II

[6] H.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: Forum Mathematicum (1997), pp. 725–733.

Milind Gunjal March 24th, 2024 2/22

Waldhausen category

A Waldhausen category ^a C is a category with a zero object, 0 equipped with two classes of morphisms: weak equivalences (WE) and cofibrations (CO) such that it has a notion of taking quotients, and satisfy certain conditions.

- $iso(\mathcal{C}) \subseteq WE(\mathcal{C}) \cap CO(\mathcal{C})$.
- $0 \to X \in CO(\mathcal{C})$ for all $X \in Ob(\mathcal{C})$.
- If $A \rightarrow B$ is a cofibration and $A \rightarrow C$ is any morphism in \mathcal{C} , then the pushout $B \bigcup_A C$ of these two maps exists in \mathcal{C} and $C \rightarrow B \bigcup_A C$ is a cofibration.

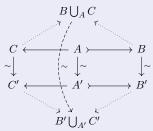
$$\begin{array}{ccc}
A & \longrightarrow & B \\
\downarrow & & \downarrow \\
C & \longmapsto & B \bigcup_A C
\end{array}$$

March 24th, 2024 3/22 Milind Gunjal

^aCharles A. Weibel. The K-book An Introduction to Algebraic K-theory. American Mathematical Society, 2010, pp. 172–174.

Waldhausen category

• Gluing axiom:



The induced map $B \bigcup_A C \to B' \bigcup_{A'} C'$ is also a weak equivalence.

• Extension axiom:

If $A \to A'$ and $B/A \to B'/A'$ are w.e. then so is $B \to B'$.

Milind Gunjal March 24th, 2024 4/22

Serre cofibrations

• In the category of topological spaces, a map $f: X \to Y$ is called a Serre fibration, if for each CW-complex A, the map f has the RLP w.r.t. the inclusion $A \times \{0\} \to A \times [0,1]$:

$$\begin{array}{ccc} A \times \{0\} & \longrightarrow & X \\ & & \downarrow & \downarrow f \\ A \times [0,1] & \longrightarrow & Y \end{array}$$

• A map f is called a Serre cofibration if it has the LLP w.r.t. acyclic fibrations.

Milind Gunjal March 24th, 2024 5/22

Crossed Module

Definition 7

A crossed module^a G_* consists of a G_0 -equivariant group homomorphism, where G_0 acts on itself by conjugation.

$$G_1 \xrightarrow{\partial} G_0$$

where the action of G_0 on G_1 satisfies

• $f^{\partial g} = g^{-1}fg$ for all $f, g \in G_1$.

Milind Gunjal March 24th, 2024 6/22

^aH.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: Forum Mathematicum (1997), pp. 725–733.

Crossed Module

Definition 7

A crossed module a G_* consists of a G_0 -equivariant group homomorphism, where G_0 acts on itself by conjugation.

$$G_1 \xrightarrow{\partial} G_0$$

where the action of G_0 on G_1 satisfies

• $f^{\partial g} = g^{-1} f g$ for all $f, g \in G_1$.

^aH.-J. Baues and Daniel Conduché. "On the 2-type of an iterated loop space". In: Forum Mathematicum (1997), pp. 725–733.

Remark

The homotopy groups of the crossed module G_* are:

- $\pi_0(G_*) = \text{Coker } \partial$,
- $\pi_1(G_*) = \text{Ker } \partial$.

March 24th, 2024 6/22 Milind Gunjal

Extending the previous idea for higher values of n:

$$X \simeq |N\mathcal{G}| \tag{1}$$

- n = 2. For a given crossed module G_* , we can construct a category $\Gamma(G_*)$ such that
 - $ightharpoonup \mathrm{Ob} (\Gamma(G_*)) = G_0$
 - 1-Mor $(\Gamma(G_*)) = G_0 \rtimes G_1$
 - **★** G_1 acts on G_0 by sending $x_0 \mapsto x_0 \cdot \partial f$ for $f \in G_1$.
- For equation 1, $\mathcal{G} = (\Gamma(G_*) \rightrightarrows *)$ works.

Stable Crossed Module

Definition 8

A stable crossed module (SCM)^a G_* is a crossed module $\partial: G_1 \to G_0$ together with a map

$$\langle \cdot, \cdot \rangle : G_0 \times G_0 \to G_1$$

satisfying the following for any $f, g \in G_1, x, y, z \in G_0$:

Milind Gunjal March 24th, 2024 8/22

^aFernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: *Advances in Mathematics* 216 (2007), pp. 179–183.

Some facts

- Examples of a model category which is not a Waldhausen category: Triangulated categories.
- The functor $_-\otimes _-:\Gamma(G_*)\times \Gamma(G_*)\to \Gamma(G_*)$ is in fact an oplax functor.

Oplax functor

If $F: \mathcal{C} \to \mathcal{D}$ is a functor such that, for 1-cells f, g, we have $F(f \circ g) \cong F(f) \circ F(g)$ (but not exactly equal). Then the functor F is called as an oplax functor.

Milind Gunjal March 24th, 2024 9/22

Suspension

Smash product

Let X, Y be two spaces. Then their smash product $X \wedge Y := X \times Y/X \vee Y$.

Example 9

 $S^1 \wedge S^1 = S^2$, in fact $S^n \wedge S^m = S^{n+m}$ for any $n, m \in \mathbb{N}$.

Remark

- $\Sigma X \cong S^1 \wedge X$.
- \bullet $\Sigma^k X \cong S^k \wedge X$.

Remark

• In a category of R-modules, we have

$$\operatorname{Hom}(X \otimes A, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(A, Y)).$$

• Similarly, in case of pointed topological spaces, smash product plays the role of the tensor product. If A, X are compact Hausdorff then we have

$$\operatorname{Hom}(X \wedge A, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(A, Y)).$$

• So, in particular, for $A = S^1$, we have

$$\operatorname{Hom}(\Sigma X, Y) \cong \operatorname{Hom}(X, \operatorname{Hom}(S^1, Y)) = \operatorname{Hom}(X, \Omega Y).$$

- Here ΩY carries compact-open topology.
- This implies, the suspension functor $\Omega \vdash \Sigma$, the loop space functor.

March 24th, 2024 11 / 22 Milind Gunjal

Let X and Y be two topological spaces, and let C(X,Y) denote the set of all continuous maps from X to Y. Given a compact subset K of X and an open subset U of Y, let V(K,U) denote the set of all functions $f \in C(X,Y)$ such that $f(K) \subseteq U$. Then the collection of all such V(K,U) is a subbase for the compact-open topology on C(X,Y).

A stable quadratic module C_* is a commutative diagram of group homomorphisms

such that given $c_i, d_i \in C_i, i = 0, 1,$

- ② $w(\{c_0\} \otimes \{d_0\} + \{d_0\} \otimes \{c_0\}) = 0$. (The stability condition).

$$C_0 \to C_0^{ab}$$
$$x \mapsto \{x\}$$

Remark

The homotopy groups of C_* are:

- $\pi_0(C_*) = \operatorname{Coker} \partial$,
- $\pi_1(C_*) = \operatorname{Ker} \partial$.

Detailed SQuad structure for a Waldhausen category⁴

- The generators for dimension 0 are:
 - ▶ [A] for any $A \in Ob(\mathfrak{C})$.
- The generators for dimension 1 are:
 - ▶ $[A_0 \xrightarrow{\sim} A_1]$ for any w.e.
 - ▶ $[A \rightarrowtail B \twoheadrightarrow B/A]$ for any cofiber sequence.
- such that the following relations hold (i.e., we define ∂, w):

 - $\qquad \qquad \partial([A \rightarrowtail B \twoheadrightarrow B/A]) = -[B] + [B/A] + [A].$
 - ightharpoonup [0] = 0.
 - $[A \xrightarrow{id} A] = 0.$
 - $[A \xrightarrow{id} A \twoheadrightarrow 0] = 0, [0 \rightarrowtail A \xrightarrow{id} A] = 0.$
 - ▶ For any composable weak equivalences $A \xrightarrow{\sim} B \xrightarrow{\sim} C$,

$$[A \xrightarrow{\sim} C] = [B \xrightarrow{\sim} C] + [A \xrightarrow{\sim} B].$$

Milind Gunjal March 24th, 2024 14 / 22

⁴Fernando Muro and Andrew Tonks. "The 1-type of a Waldhausen K-theory spectrum". In: *Advances in Mathematics* 216 (2007), pp. 179–183.

▶ For any $A, B \in Ob(\mathcal{C})$, define the w as follows:

$$= \\ -[B \xrightarrow{i_2} A \coprod B \xrightarrow{p_1} A] + [A \xrightarrow{i_1} A \coprod B \xrightarrow{p_2} B].$$
 Here,
$$A \xleftarrow{i_1}_{p_1} A \coprod B \xleftarrow{i_2}_{p_2} B$$

 $w([A] \otimes [B]) := \langle [A], [B] \rangle$

are natural inclusions and projections of a coproduct in C.

▶ For any commutative diagram in C as follows:

$$A_0 \longmapsto B_0 \longrightarrow B_0/A_0$$

$$\downarrow^{\sim} \qquad \downarrow^{\sim} \qquad \downarrow^{\sim}$$

$$A_1 \longmapsto B_1 \longrightarrow B_1/A_1$$

we have

$$[A_0 \xrightarrow{\sim} A_1] + [B_0/A_0 \xrightarrow{\sim} B_1/A_1] + \langle [A], -[B_1/A_1] + [B_0/A_0] \rangle$$

$$=$$

$$-[A_1 \rightarrowtail B_1 \twoheadrightarrow B_1/A_1] + [B_0 \xrightarrow{\sim} B_1] + [A_0 \rightarrowtail B_0 \twoheadrightarrow B_0/A_0].$$

► For any commutative diagram consisting of cofiber sequences in C as follows:

$$C/B$$

$$\uparrow$$

$$B/A \rightarrowtail C/A$$

$$\uparrow$$

$$\uparrow$$

$$A \rightarrowtail B \rightarrowtail C$$

$$f \Longrightarrow C \twoheadrightarrow C/B + [A \rightarrowtail B \twoheadrightarrow B/A]$$

we have,

$$\begin{aligned} [B \rightarrowtail C \twoheadrightarrow C/B] + [A \rightarrowtail B \twoheadrightarrow B/A] \\ = \end{aligned}$$

$$[\mathsf{A}\rightarrowtail C\twoheadrightarrow C/A]+[B/A\rightarrowtail C/A\twoheadrightarrow C/B]+\langle [A],-[C/A]+[C/B]+[B/A]\rangle.$$

Simplicial Set

A simplicial set $X \in \mathbf{sSet}$ is

- for each $n \in \mathbb{N}$ a set $X_n \in \mathbf{Set}$ (the set of *n*-simplices),
- for each injective map $\partial_i : [n1]\beta[n]$ of totally ordered sets $([n]: = (0 < 1 < \cdots < n),$
- a function $d_i: X_n \to X_{n1}$ (the i^{th} face map on n-simplices) (n > 0 and 0in),
- for each surjective map $\sigma_i : [n+1] \to [n]$ of totally ordered sets,
- a function $s_i: X_n \to X_{n+1}$ (the i^{th} degeneracy map on n-simplices) ($n \ge 0$ and $0 \le i \le n$),
- such that these functions satisfy the simplicial identities:

$$d_i d_j = d_{j-1} d_i \text{ for } i < j$$

$$d_i s_j = \begin{cases} s_{j-1} d_i, & \text{when } i < j, \\ 1, & \text{when } i = j, j+1, \\ s_j d_{i-1}, & \text{when } i > j+1 \end{cases}$$

$$s_i s_j = s_{j+1} s_i \text{ when } i \le j$$

March 24th, 2024 17 / 22

The face maps, and degeneracy maps for the Nerve of a category are as follows:

• $s_i: N_k(\mathfrak{C}) \to N_{k+1}(\mathfrak{C})$:

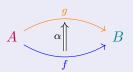
$$(A_1 \to \cdots \to A_i \to \cdots \to A_k) \mapsto (A_1 \to \cdots \to A_i \xrightarrow{\mathrm{id}} A_i \to \cdots \to A_k).$$

Milind Gunjal March 24th, 2024 18 / 22

2-Categories

A (strict) 2-category C is comprised of the following:

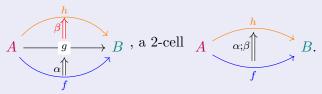
- 0-Cells (Objects): Denoted by $Ob(\mathcal{C})$.
- 1-Cells (Morphisms): For $A, B \in Ob(\mathcal{C})$, a set Hom(A, B) of 1-cells from A to B, also known as morphisms. A 1-cell is often written textually as $f: A \to B$ or graphically as $A \xrightarrow{f} B$.
- 2-Cells: For $A, B \in Ob(\mathfrak{C}), f, g \in Hom(A, B)$, a set Face(f, g) of 2-cells from f to g. A 2-cell is often written textually as $\alpha: f \Rightarrow g: A \to B$ or graphically as follows:



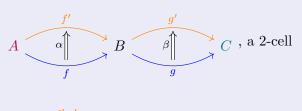
• 1-Composition: For each chain of 1-cells $A \xrightarrow{f} B \xrightarrow{g} C$, a 1-cell $A \xrightarrow{f:g} C$

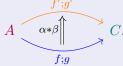
Milind Gunjal March 24th, 2024 20 / 22

• Vertical 2-Composition: For a chain of 2-cells

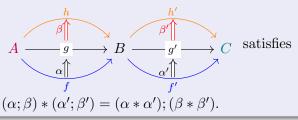


• Horizontal 2-Composition: For each chain of 2-cells





- Associativity: For all the compositions.
- Identities of 1-cells and 2-cells exist and are compatible with all the compositions.
- 2-Interchange: Every clover of 2-cells



Milind Gunjal March 24th, 2024 22 / 22